Abstract

A near-field ellipsometry method is presented for nano-scale thin film characterization. The technique fuses the topographic and ellipsometric optical measurements that are simultaneously obtained by a scanning near-field optical microscopy (SNOM). It is shown that the proposed near-field ellipsometry is able to attain nano-scale lateral resolution and correct artifacts in characterization. The effectiveness of the proposed method is verified by simulation and experimental studies.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
    [CrossRef]
  2. J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, "High efficiency electrooptic polymer light modulator based on waveguide-coupled surface plasmon resonance," in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yeates, K. D. Belfield, F. Kajzar, and C. M. Lawson, eds., Proc. SPIE 5211, 197-206 (2003).
    [CrossRef]
  3. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005), http://www. opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-3-977.
    [CrossRef] [PubMed]
  4. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [CrossRef]
  5. G. Lang and G. Inzelt, "Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution," Electrochimica Acta 36(5-6), 847-854 (1991).
    [CrossRef]
  6. S. B. Wang, Y. Xiao, H. K. Jia, and L. A. Li, "Optical 3D shape measurement for nano-scale thin film buckling," in International Conference on Experimental Mechanics 2008, X. He, H. Xie, and Y. Kang, eds., Proc. SPIE 7375, 73755L (2008).
    [CrossRef]
  7. A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
    [CrossRef] [PubMed]
  8. Y.-L. Shi, J.-H. Su, L.-H. Yang, and J.-Q. Xu, "Research on the measurement of thin film thickness based on phase-shift interferometry," in I4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Y. Zhang, J. C. Wyant, R. A. Smythe, and H. Wang, eds., Proc. SPIE 7283, 728330 (2009).
    [CrossRef]
  9. D. Roy, "Optical characterization of multi-layer thin films using the surface plasmon resonance method: a sixphase model based on the Kretschmann formalism," Opt. Commun. 200, 119-130 (2001).
    [CrossRef]
  10. G. H. Tompkins, Handbook of Ellipsometry (William Andrew, Heidelberg, 2005).
    [CrossRef]
  11. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1997).
  12. P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
    [CrossRef]
  13. J. E. Kihm, K. G. Lee, and D. S. Kim, "Selective coupling of transverse field into metal coated fiber probes," in Proceedings of 10th International conference on near-field optics, nanophotonics and related techniques, O. E. Martinez and A. V. Bragas, eds. (Buenos Aires, 2008), pp. 165.
  14. W. G. Oldham, "Numerical Techniques for Lossy Films," Surface Science 16, 97-103 (1969).
    [CrossRef]
  15. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, "Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials," Opt. Express 16(13), 9942-9950 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-13-9942.
    [CrossRef] [PubMed]
  16. R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

2008 (2)

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, "Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials," Opt. Express 16(13), 9942-9950 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-13-9942.
[CrossRef] [PubMed]

2005 (1)

2004 (2)

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
[CrossRef]

R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

2001 (2)

D. Roy, "Optical characterization of multi-layer thin films using the surface plasmon resonance method: a sixphase model based on the Kretschmann formalism," Opt. Commun. 200, 119-130 (2001).
[CrossRef]

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
[CrossRef]

2000 (1)

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
[CrossRef]

1991 (1)

G. Lang and G. Inzelt, "Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution," Electrochimica Acta 36(5-6), 847-854 (1991).
[CrossRef]

1969 (1)

W. G. Oldham, "Numerical Techniques for Lossy Films," Surface Science 16, 97-103 (1969).
[CrossRef]

Berini, P.

Bettermann, A. D.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Brehmer, L.

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
[CrossRef]

Brongersma, M. L.

Catrysse, P. B.

Charbonneau, R.

Dandliker, R.

R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

Doumae, N.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
[CrossRef]

Fujii, M.

Hayashi, S.

Ikariyama, Y.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
[CrossRef]

Inzelt, G.

G. Lang and G. Inzelt, "Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution," Electrochimica Acta 36(5-6), 847-854 (1991).
[CrossRef]

Karageorgiev, P.

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
[CrossRef]

Karbassi, A.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Lahoud, N.

Lang, G.

G. Lang and G. Inzelt, "Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution," Electrochimica Acta 36(5-6), 847-854 (1991).
[CrossRef]

Mattiussi, G.

Nesci, A.

R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

Oldham, W. G.

W. G. Oldham, "Numerical Techniques for Lossy Films," Surface Science 16, 97-103 (1969).
[CrossRef]

Orendi, H.

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
[CrossRef]

Paulson, C. A.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

Roy, D.

D. Roy, "Optical characterization of multi-layer thin films using the surface plasmon resonance method: a sixphase model based on the Kretschmann formalism," Opt. Commun. 200, 119-130 (2001).
[CrossRef]

Ruf, D.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Selker, M. D.

Shoji, A.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
[CrossRef]

Stancliff, R.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Stiller, B.

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
[CrossRef]

Tanbakuchi, H.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Tomita, S.

Tortora, P.

R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

Toyama, S.

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
[CrossRef]

Vaccaro, L.

R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

Van Der Weide, D. W.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Wood, B.

Yanagi, H.

Yokoyama, T.

Zia, R.

Appl. Phys. Lett. (1)

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, "Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range," Appl. Phys. Lett. 79(11), (2001).
[CrossRef]

Electrochimica Acta (1)

G. Lang and G. Inzelt, "Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution," Electrochimica Acta 36(5-6), 847-854 (1991).
[CrossRef]

J. Opt. Soc. Am. A (2)

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
[CrossRef]

R. Dandliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. Soc. Am. A 6(3), S18-S23 (2004).

Opt. Commun. (1)

D. Roy, "Optical characterization of multi-layer thin films using the surface plasmon resonance method: a sixphase model based on the Kretschmann formalism," Opt. Commun. 200, 119-130 (2001).
[CrossRef]

Opt. Express (2)

Rev. Sci. Instrum. (1)

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. Van Der Weide, H. Tanbakuchi, and R. Stancliff, "Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement," Rev. Sci. Instrum. 79, 094706 (2008).
[CrossRef] [PubMed]

Sens. Act. B (1)

S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, "Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor," Sens. Act. B 65, 32-34 (2000).
[CrossRef]

Surface Science (1)

W. G. Oldham, "Numerical Techniques for Lossy Films," Surface Science 16, 97-103 (1969).
[CrossRef]

Other (6)

G. H. Tompkins, Handbook of Ellipsometry (William Andrew, Heidelberg, 2005).
[CrossRef]

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1997).

J. E. Kihm, K. G. Lee, and D. S. Kim, "Selective coupling of transverse field into metal coated fiber probes," in Proceedings of 10th International conference on near-field optics, nanophotonics and related techniques, O. E. Martinez and A. V. Bragas, eds. (Buenos Aires, 2008), pp. 165.

J.-J. Chyou, C.-S. Chu, Z.-H. Shih, C.-Y. Lin, K.-T. Huang, S.-J. Chen, and S.-F. Shu, "High efficiency electrooptic polymer light modulator based on waveguide-coupled surface plasmon resonance," in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yeates, K. D. Belfield, F. Kajzar, and C. M. Lawson, eds., Proc. SPIE 5211, 197-206 (2003).
[CrossRef]

Y.-L. Shi, J.-H. Su, L.-H. Yang, and J.-Q. Xu, "Research on the measurement of thin film thickness based on phase-shift interferometry," in I4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Y. Zhang, J. C. Wyant, R. A. Smythe, and H. Wang, eds., Proc. SPIE 7283, 728330 (2009).
[CrossRef]

S. B. Wang, Y. Xiao, H. K. Jia, and L. A. Li, "Optical 3D shape measurement for nano-scale thin film buckling," in International Conference on Experimental Mechanics 2008, X. He, H. Xie, and Y. Kang, eds., Proc. SPIE 7375, 73755L (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A single layer thin film on a prism.

Fig. 2.
Fig. 2.

Schematic of the AFM and ellipsometric SNOM relationship.

Fig. 3.
Fig. 3.

Schematic of the prism-sample configuration.

Fig. 4.
Fig. 4.

Simulations for the AFM and near-field ellipsometry measurement with line scanning of the sample. (a) Schematic view of sample. (b) Calculated sample refractive index using the first implementation of near-field ellipsometry Eq. (9). (c) Calculated sample thickness using the first implementation of near-field ellipsometry Eq. (9). (d) Calculated sample refractive index using the second implementation Eq. (11). (e) Calculated sample thickness using the second implementation Eq. (11).

Fig. 5.
Fig. 5.

Simulation for line scan of multi-layer sample. (a) Schematic view of multi-layer sample. (b) Calculated thickness of multi-layer sample. (c) Calculated refractive index of multi-layer sample.

Fig. 6.
Fig. 6.

Experimental characterization results of a single layer thin film.

Tables (1)

Tables Icon

Table 1. Variances of refractive index and thickness calculated under different noise situations using the 1st and 2nd nano ellipsometry implementation.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

( A i + 1 s B i + 1 s ) = M i s ( A i s B i s ) = 1 2 k z i + 1 ( ( k z i + 1 + k z i ) exp ( j k z i d i ) ( k z i + 1 k z i ) exp ( j k z i d i ) ( k z i + 1 k z i ) exp ( j k z i d i ) ( k z i + 1 + k z i ) exp ( j k z i d i ) ) ( A i s B i s ) ,
( A 3 s B 3 s ) = M 1 s M 2 s ( A 1 s B 1 s ) .
T s = A 3 s A 1 s = 4 k z 1 k z 2 exp ( j k z 2 d ) ( k z 1 + k z 2 ) ( k z 2 + k z 3 ) + ( k z 1 k z 2 ) ( k z 2 k z 3 ) exp ( 2 j k z 2 d ) ,
M i p = 1 2 ε i k z i + 1 ( ( ε i k z i + 1 + ε i + 1 k z i ) exp ( j k z i d i ) ( ε i k z i + 1 ε i + 1 k z i ) exp ( j k z i d i ) ( ε i k z i + 1 ε i + 1 k z i ) exp ( j k z i d i ) ( ε i k z i + 1 + ε i + 1 k z i ) exp ( j k z i d i ) ) .
T x = k z 3 ε 1 A 3 p k z 1 ε 3 A 1 p
= 4 ε 1 ε 2 k z 2 k z 3 exp ( j k z 2 d ) ( ε 2 k z 1 + ε 1 k z 2 ) ( ε 3 k z 2 + ε 2 k z 3 ) + ( ε 2 k z 1 ε 1 k z 2 ) ( ε 3 k z 2 ε 2 k z 3 ) exp ( 2 j k z 2 d ) .
ρ = T y T x
= k z 1 [ ( ε 2 k z 1 + ε 1 k z 2 ) ( ε 3 k z 2 + ε 2 k z 3 ) + ( ε 2 k z 1 ε 1 k z 2 ) ( ε 3 k z 2 ε 2 k z 3 ) exp ( 2 j k z 2 d ) ] ε 1 ε 2 k z 3 [ ( k z 1 + k z 2 ) ( k z 2 + k z 3 ) + ( k z 1 k z 2 ) ( k z 2 k z 3 ) exp ( 2 j k z 2 d ) ]
f ε 2 d ,
d 0 = d + d A ,
X 1 + X 2 exp ( j 2 Δ ) Y 1 + Y 2 exp ( j 2 Δ ) ρ = 0 ,
X 1 = k z 1 ( ε 2 k z 1 + ε 1 k 0 ε 2 ε 1 sin 2 θ ) ( ε 3 k 0 ε 2 ε 1 sin 2 θ + ε 2 k z 3 ) ,
X 2 = k z 1 ( ε 2 k z 1 ε 1 k 0 ε 2 ε 1 sin 2 θ ) ( ε 3 k 0 ε 2 ε 1 sin 2 θ ε 2 k z 3 ) ,
Y 1 = ε 1 ε 2 k z 3 ( k z 1 + k 0 ε 2 ε 1 sin 2 θ ) ( k 0 ε 2 ε 1 sin 2 θ + k z 3 ) ,
Y 2 = ε 1 ε 2 k z 3 ( k z 1 k 0 ε 2 ε 1 sin 2 θ ) ( k 0 ε 2 ε 1 sin 2 θ k z 3 ) ,
Δ = k 0 ε 2 ε 1 sin 2 θ ( d 0 d A )
ε 2 n + 1 = ε 2 n H ( ε 2 n ) H ( ε 2 n ) , n = 0,1,2 , ,
H ( ε 2 ) X 1 + X 2 exp ( j 2 Δ ) Y 1 + Y 2 exp ( j 2 Δ ) ρ = 0 .
( ε 2 m + 1 d m + 1 ) = ( ε 2 m d m ) J F 1 ε 2 m d m F ε 2 m d m , m = 0,1,2 , ,
F ε 2 d ( Re [ f ε 2 d ρ ] Im [ f ε 2 d ρ ] )
M s = M 1 s M 2 s M n 1 s
( A n s 0 ) = M s ( A 1 s B 1 s ) .
( A 1 s B 1 s ) = ( M s ) 1 ( A n s 0 ) = ( m ˜ 11 s m ˜ 12 s m ˜ 21 s m ˜ 22 s ) ( A n 0 ) = ( m ˜ 11 s m ˜ 21 s ) A n s .
T s = A n s A 1 s = 1 m ˜ 11 s .
( A 1 p B 1 p ) = ( M p ) 1 ( A n p 0 ) = ( m ˜ 11 p m ˜ 12 p m ˜ 21 p m ˜ 22 p ) ( A n p 0 ) = ( m ˜ 11 p m ˜ 21 p ) A n p ,
T x = k z n A n p k z 1 A 1 p = k z n ε 1 k z 1 ε n m ˜ 11 p .
ρ λ = k z 1 ε n m ˜ 11 p k z n ε 1 m ˜ 11 s = f λ ε 1 ε n d 1 d n ,
d 0 = d s 2 + d s 3 + + d s n 1 + d A ,
min { F T E D F E D } s . t . g ( d s i ) = d A + d s i d 0 = 0 ,
F E D ( Re [ f λ 1 ρ λ 1 ] Im [ f λ 1 ρ λ 1 ] Re [ f λ n 2 ρ λ n 2 ] Im [ f λ n 2 ρ λ n 2 ] ) .
L E D v = F T E D F E D v g ( D ) ,
L ε s i = 0 , L d s i = 0 , L v = 0
( E ( m + 1 ) D ( m + 1 ) v ( m + 1 ) ) = ( E ( m ) D ( m ) v ( m ) ) J L 1 E ( m ) D ( m ) v ( m ) L E ( m ) D ( m ) v ( m ) , for m = 0,1,2 , .

Metrics