Abstract

This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environments. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample’s scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cell environments.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
    [CrossRef] [PubMed]
  2. J. L. West, R. A. Drezek, and H. N. J., "Nanotechnology provides new tools for biomedical optics," in Tissue Engineering and Artifical Organs, 3rd Edition, J. D. Bronzino, ed., pp. 25-1-25-9 (CRC Press, 2006).
  3. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
    [CrossRef] [PubMed]
  4. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
    [CrossRef] [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
    [CrossRef]
  6. G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
    [CrossRef]
  7. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
    [CrossRef] [PubMed]
  8. U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  9. M. Atlan, M. Gross, and E. Absil, "Accurate phase-shifting digital interferometry," Opt. Lett. 32, 1456-1458 (2007).
    [CrossRef] [PubMed]
  10. F. LeClerc, M. Gross, and L. Collot, "Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001).
    [CrossRef]
  11. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).
  12. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, "Parameter-Optimized Digital Holographic Microscope for High-Resolution Living-Cell Analysis," Appl. Opt. 43, 6536-6544 (2004).
    [CrossRef]
  13. M. Atlan, M. Gross, and E. Absil, "Digital holography with ultimate sensitivity," Opt. Lett. 32, 909-911 (2007).
    [CrossRef] [PubMed]
  14. F. LeClerc, L. Collot, and M. Gross, "Numerical heterodyne holography with two-dimensional photo-detector arrays," Opt. Lett. 25, 716-718 (2000).
    [CrossRef]
  15. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]
  16. E. Leith and J. Upatnieks, "Microscopy by wave front reconstruction," J. Opt. Soc. Am. 55, 981-986 (1965).
  17. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  18. M. Gross, M. Atlan, and E. Absil, "Noise and aliases in off-axis and phase-shifting holography," Appl. Opt. 47, 1757-1766 (2008).
    [CrossRef] [PubMed]
  19. W. Xu, M. H. Jericho, I. A. Melnertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA.
    [PubMed]
  20. C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, "High resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  21. C. J. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006).
    [CrossRef] [PubMed]
  22. F. Charri’ere, A. Marian, F. Montfort, J. Kuehn, and T. Colomb, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006).
    [CrossRef] [PubMed]
  23. M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008).
    [CrossRef]
  24. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, "Photothermal heterodyne holography of gold nanoparticles," Opt. Express 18, 780-786 (2010).
    [CrossRef] [PubMed]
  25. D. Goldberg and D. Burmeister, "Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy," J. Cell Biol. 103, 1921-1931 (1986).
    [CrossRef] [PubMed]
  26. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriére, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006).
    [CrossRef]
  27. U. Schnars andW. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  28. L. Yu and M. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]

2010

2008

M. Gross, M. Atlan, and E. Absil, "Noise and aliases in off-axis and phase-shifting holography," Appl. Opt. 47, 1757-1766 (2008).
[CrossRef] [PubMed]

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008).
[CrossRef]

2007

2006

F. Charri’ere, A. Marian, F. Montfort, J. Kuehn, and T. Colomb, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006).
[CrossRef] [PubMed]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriére, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

C. J. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

2005

2004

2003

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

2002

U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

2001

2000

1997

1994

1986

D. Goldberg and D. Burmeister, "Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy," J. Cell Biol. 103, 1921-1931 (1986).
[CrossRef] [PubMed]

1965

Absil, E.

Aspert, N.

Atlan, M.

Berciaud, S.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

Blab, G. A.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

Bourquin, S.

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Burmeister, D.

D. Goldberg and D. Burmeister, "Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy," J. Cell Biol. 103, 1921-1931 (1986).
[CrossRef] [PubMed]

Carl, D.

Charri’ere, F.

Charriére, F.

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Cognet, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Collot, L.

Colomb, T.

Coppey-Moisan, M.

E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, "Photothermal heterodyne holography of gold nanoparticles," Opt. Express 18, 780-786 (2010).
[CrossRef] [PubMed]

M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008).
[CrossRef]

Cuche, E.

Depeursinge, C.

Desbiolles, P.

M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008).
[CrossRef]

Di, J.

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Fan, Q.

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Fournier, D.

Franzel, T.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Goldberg, D.

D. Goldberg and D. Burmeister, "Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy," J. Cell Biol. 103, 1921-1931 (1986).
[CrossRef] [PubMed]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

Gross, M.

Heine, M.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

Jiang, H.

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

Jüptner, W.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kemper, B.

Kim, M.

Kim, M. K.

C. J. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006).
[CrossRef] [PubMed]

C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, "High resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005).
[CrossRef] [PubMed]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Kuehn, J.

Kühn, J.

Lasne, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

LeClerc, F.

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

Leith, E.

Lo, C. M.

Lounis, B.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

Mann, C. J.

C. J. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006).
[CrossRef] [PubMed]

C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, "High resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005).
[CrossRef] [PubMed]

Marian, A.

Marquet, P.

Montfort, F.

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

U. Schnars andW. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
[CrossRef] [PubMed]

Sonnichsen, C.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

Suck, S.

Sun, W.

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Tessier, G.

E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, "Photothermal heterodyne holography of gold nanoparticles," Opt. Express 18, 780-786 (2010).
[CrossRef] [PubMed]

M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008).
[CrossRef]

Upatnieks, J.

von Bally, G.

Warnasooriya, N.

Wernicke, G.

Yamaguchi, I.

Yu, L.

Zhang, P.

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

Zhang, T.

Zhao, J.

J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).

Appl. Opt.

Biomed. Eng. Online

C. J. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006).
[CrossRef] [PubMed]

Biophys. J.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006).
[CrossRef] [PubMed]

J. Cell Biol.

D. Goldberg and D. Burmeister, "Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy," J. Cell Biol. 103, 1921-1931 (1986).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006).
[CrossRef] [PubMed]

Meas. Sci. Technol.

U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Nano Lett.

G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett

M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci. USA

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003).
[CrossRef] [PubMed]

Science

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003).
[CrossRef]

Other

J. L. West, R. A. Drezek, and H. N. J., "Nanotechnology provides new tools for biomedical optics," in Tissue Engineering and Artifical Organs, 3rd Edition, J. D. Bronzino, ed., pp. 25-1-25-9 (CRC Press, 2006).

W. Xu, M. H. Jericho, I. A. Melnertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representation of the coupling between 3T3 cells and gold beads

Fig. 2.
Fig. 2.

Experimental setup. AOM1, AOM2: acousto-optic modulators; M: mirror; MO: microscope objective NA = 0.5; λ/2: half wave plate; BS: beam splitter; PBS: polarizing beam splitter; CCD: CCD camera; ER : reference wave; EO : object illumination wave; E: scattered wave; θ: angular tilt; ND 1, ND 2: neutral density filters; z = 0: CCD plane; z = z 0: CCD conjugate plane with respect to MO.

Fig. 3.
Fig. 3.

Fibroblast cell tagged with a 40 nm gold particle. (a) Direct image under white light illumination. (b) Reconstructed Holographic intensity I image. The 40 nm gold particle is marked with a white arrow. The color scale corresponds to 6 < ln(I) < 15). (c) Volume view of the 3D reconstructed data (512×512×512 voxels; voxel size 177 nm in all directions). The holographic reconstruction is made in (b) and (c) from 1 CCD frame with an exposure time of 100 ms.

Fig. 4.
Fig. 4.

A fibroblast cell tagged with a 40 nm gold particle using 1 frame acquisition. (a) 3D linear-scale surface plot of the intensity image reconstructed from a single frame. (b) Experimental linear-scale plot of cuts made within the intensity signal I along the three axis x,y and z at the brightest voxel of Fig. 3(b) corresponding to the gold nanoparticle location. Curves 1, 2 and 3 correspond to the x,y and z axis respectively. The horizontal dashed line represents the half maximum of the curves. Curves marked with arrows are zooms of the corresponding curves from maximum to half maximum. Light grey curves correspond to the different ideal theoretical curves.

Fig. 5.
Fig. 5.

A fibroblast cell tagged with a 40 nm gold particle using 32 frames acquisition. (a) 3D linear-scale surface plot of the 32 frames reconstructed holographic intensity image. (b) Reconstructed Holographic intensity I image. The color scale corresponds to 6 < ln(I) < 15).

Fig. 6.
Fig. 6.

(a) Experimental linear plot of cuts made within the intensity signal I along the three axis x,y and z at the brightest voxel of Fig. 5(b) corresponding to the gold nanoparticle location. Curves 1, 2 and 3 corresponds to the x,y and z axis respectively. The horizontal dashed line represents the half maximum of the curves. Curves marked with arrows are zooms of the corresponding curves from maximum to half maximum. Light grey curves correspond to the different ideal theoretical curves. (b) Intensity plot of the cut along the x axis in logarithmic scale 1 at the nanoparticle location and 4 without illuminating the sample

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ f = f AOM 1 f AOM 2 = f CCD 4
E ( x , y , z = 0 ) = n = 1 M j n I n
E ( x , y , z = z 0 ) = e j ( K x x + K y y ) e jA ( x 2 + y 2 ) n = 0 M j n I n

Metrics