Abstract

We present an experimental study of an integrated slot-waveguide refractive index sensor array fabricated in silicon nitride on silica. We study the temperature dependence of the slot-waveguide ring resonator sensors and find that they show a low temperature dependence of −16.6 pm/K, while at the same time a large refractive index sensitivity of 240 nm per refractive index unit. Furthermore, by using on-chip temperature referencing, a differential temperature sensitivity of only 0.3 pm/K is obtained, without individual sensor calibration. This low value indicates good sensor-to-sensor repeatability, thus enabling use in highly parallel chemical assays. We demonstrate refractive index measurements during temperature drift and show a detection limit of 8.8 × 10−6 refractive index units in a 7 K temperature operating window, without external temperature control. Finally, we suggest the possibility of athermal slot-waveguide sensor design.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Markov, D. Begari, and D. J. Bornhop, "Breaking the 10−7 Barrier for RI Measurements in Nanoliter Volumes," Anal. Chem. 74, 5438-5441 (2002), http://dx.doi.org/10.1021/ac020403c.
    [CrossRef] [PubMed]
  2. R. Karlsson, A. Michaelsson, and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system," J. Immunol. Methods 145, 229-240 (1991), http://dx.doi.org/10.1016/0022-1759(91)90331-9.
    [CrossRef] [PubMed]
  3. Z. Wang and D. J. Bornhop, "Dual-Capillary Backscatter Interferometry for High-Sensitivity Nanoliter-Volume Refractive Index Detection with Density Gradient Compensation," Anal. Chem. 77, 7872-7877 (2005), http://dx.doi.org/10.1021/ac050752h.
    [CrossRef] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta 620, 8-26 (2008), http://dx.doi.org/10.1016/j.aca.2008.05.022.
    [CrossRef] [PubMed]
  5. A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, "Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density," Journal of Physical and Chemical Reference Data 27, 761-774 (1998), http://dx.doi.org/10.1063/1.556029.
    [CrossRef]
  6. H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition," Appl. Opt. 34, 667+ (1995), http://www.opticsinfobase.org/abstract.cfm?id=45986.
    [CrossRef] [PubMed]
  7. L. Eldada, "Advances in telecom and datacom optical components," Opt. Eng. 40, 1165-1178 (2001), http://dx.doi.org/10.1117/1.1372703.
    [CrossRef]
  8. Y. Kokubun, N. Funato, and M. Takizawa, "Athermal waveguides for temperatureindependent lightwave devices," IEEE Photon. Technol. Lett. 5, 1297-1300 (1993), http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=250049.
    [CrossRef]
  9. J. D. Suter, I. M. White, H. Zhu, and X. Fan, "Thermal characterization of liquid core optical ring resonator sensors," Appl. Opt. 46, 389-396 (2007), http://dx.doi.org/10.1364/AO.46.000389.
    [CrossRef] [PubMed]
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Optics Letters 29, 1209-1211 (2004), http://dx.doi.org/10.1364/OL.29.001209.
    [CrossRef] [PubMed]
  11. J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, "Controlling temperature dependence of silicon waveguide using slot structure," Opt. Express 16, 1645-1652 (2008), http://dx.doi.org/10.1364/OE.16.001645.
    [CrossRef] [PubMed]
  12. G. Maire, L. Vivien, G. Sattler, A. Kázmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, "High efficiency silicon nitride surface grating couplers," Opt. Express 16, 328-333 (2008). URL http://dx.doi.org/10.1364/OE.16.000328.
    [CrossRef] [PubMed]
  13. J. Blasco and C. A. Barrios, "Compact slot-waveguide/channel-waveguide mode-converter," in Conference on Lasers and Electro-Optics Europe 2005, p. 607 (2005), http://dx.doi.org/10.1109/CLEOE.2005.1568383.
    [CrossRef]
  14. P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9202 (2006), http://www.opticsinfobase.org/abstract.cfm?id=114595.
    [CrossRef] [PubMed]
  15. C. A. Barrios, K. B. Gylfason, B. S’anchez, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Optics Letters 32, 3080-3082 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144251.
    [CrossRef] [PubMed]
  16. A. Kázmierczak, F. Dortu, O. Schrevens, D. Giannone, L. Vivien, D. M. Morini, D. Bouville, E. Cassan, K. B. Gylfason, H. Sohlstr¨om, B. Sanchez, A. Griol, and D. Hill, "Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system," Opt. Eng. 48, 14,401+ (2009), http://dx.doi.org/10.1117/1.3067875.
  17. C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
    [CrossRef] [PubMed]
  18. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
    [CrossRef]
  19. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
    [CrossRef]
  20. D. R. Lide, ed., CRC handbook of chemistry and physics. (CRC; Taylor & Francis [distributor], 2008), http://www.worldcat.org/oclc/219996604.
  21. H. Sohlström and M. Öberg, "Refractive index measurement using integrated ring resonators," in The 8th EuropeanConference on Integrated Optics, pp. 322-325 (1997).
  22. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform," Opt. Express 15, 6846-6856 (2007), http://www.opticsinfobase.org/abstract.cfm?id=134979.
    [CrossRef] [PubMed]
  23. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008), http://dx.doi.org/10.1364/OE.16.004296.
    [CrossRef] [PubMed]
  24. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, "Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator," IEEE Photonics Journal 1, 197-204 (2009), http://dx.doi.org/10.1109/JPHOT.2009.2031596.
    [CrossRef]
  25. C. A. Barrios, "Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor," in Optical Sensors 2009, F. Baldini, J. Homola, and R. A. Lieberman, eds., vol. 7356, pp. 735,605+ (SPIE, 2009), http://dx.doi.org/10.1117/12.820172.
  26. M.-S. Kwon and W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt. Express 16, 9372-9377 (2008), http://dx.doi.org/10.1364/OE.16.009372.
    [CrossRef] [PubMed]
  27. J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem. 75, 6544-6554 (2003), http://dx.doi.org/10.1021/ac0346712.
    [CrossRef] [PubMed]
  28. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008), http://www.opticsinfobase.org/abstract.cfm?id=148904.
    [CrossRef] [PubMed]
  29. F. Dell’Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007), http://dx.doi.org/10.1364/OE.15.004977.
    [CrossRef] [PubMed]
  30. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulatorbased slot waveguides," Appl. Phys. Lett. 86, 081,101+ (2005), http://dx.doi.org/10.1063/1.1871360.
    [CrossRef]

2010 (1)

C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
[CrossRef] [PubMed]

2008 (5)

2007 (4)

2006 (1)

2005 (1)

Z. Wang and D. J. Bornhop, "Dual-Capillary Backscatter Interferometry for High-Sensitivity Nanoliter-Volume Refractive Index Detection with Density Gradient Compensation," Anal. Chem. 77, 7872-7877 (2005), http://dx.doi.org/10.1021/ac050752h.
[CrossRef] [PubMed]

2004 (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Optics Letters 29, 1209-1211 (2004), http://dx.doi.org/10.1364/OL.29.001209.
[CrossRef] [PubMed]

2003 (1)

J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem. 75, 6544-6554 (2003), http://dx.doi.org/10.1021/ac0346712.
[CrossRef] [PubMed]

2002 (1)

D. Markov, D. Begari, and D. J. Bornhop, "Breaking the 10−7 Barrier for RI Measurements in Nanoliter Volumes," Anal. Chem. 74, 5438-5441 (2002), http://dx.doi.org/10.1021/ac020403c.
[CrossRef] [PubMed]

2001 (1)

L. Eldada, "Advances in telecom and datacom optical components," Opt. Eng. 40, 1165-1178 (2001), http://dx.doi.org/10.1117/1.1372703.
[CrossRef]

1998 (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, "Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density," Journal of Physical and Chemical Reference Data 27, 761-774 (1998), http://dx.doi.org/10.1063/1.556029.
[CrossRef]

1991 (1)

R. Karlsson, A. Michaelsson, and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system," J. Immunol. Methods 145, 229-240 (1991), http://dx.doi.org/10.1016/0022-1759(91)90331-9.
[CrossRef] [PubMed]

1989 (1)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

Ackerman, D. A.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

Almeida, V. R.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Optics Letters 29, 1209-1211 (2004), http://dx.doi.org/10.1364/OL.29.001209.
[CrossRef] [PubMed]

Anderson, P. A.

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Barrios, C. A.

C. A. Barrios, K. B. Gylfason, B. S’anchez, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Optics Letters 32, 3080-3082 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144251.
[CrossRef] [PubMed]

C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform," Opt. Express 15, 6846-6856 (2007), http://www.opticsinfobase.org/abstract.cfm?id=134979.
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Optics Letters 29, 1209-1211 (2004), http://dx.doi.org/10.1364/OL.29.001209.
[CrossRef] [PubMed]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Begari, D.

D. Markov, D. Begari, and D. J. Bornhop, "Breaking the 10−7 Barrier for RI Measurements in Nanoliter Volumes," Anal. Chem. 74, 5438-5441 (2002), http://dx.doi.org/10.1021/ac020403c.
[CrossRef] [PubMed]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Bornhop, D. J.

Z. Wang and D. J. Bornhop, "Dual-Capillary Backscatter Interferometry for High-Sensitivity Nanoliter-Volume Refractive Index Detection with Density Gradient Compensation," Anal. Chem. 77, 7872-7877 (2005), http://dx.doi.org/10.1021/ac050752h.
[CrossRef] [PubMed]

D. Markov, D. Begari, and D. J. Bornhop, "Breaking the 10−7 Barrier for RI Measurements in Nanoliter Volumes," Anal. Chem. 74, 5438-5441 (2002), http://dx.doi.org/10.1021/ac020403c.
[CrossRef] [PubMed]

Carlborg, C. F.

C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
[CrossRef] [PubMed]

Casquel, R.

Chen, L.

Dell’Olio, F.

Dortu, F.

C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
[CrossRef] [PubMed]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Eldada, L.

L. Eldada, "Advances in telecom and datacom optical components," Opt. Eng. 40, 1165-1178 (2001), http://dx.doi.org/10.1117/1.1372703.
[CrossRef]

Fan, X.

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, "Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density," Journal of Physical and Chemical Reference Data 27, 761-774 (1998), http://dx.doi.org/10.1063/1.556029.
[CrossRef]

Griol, A.

Gylfason, K. B.

C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. S’anchez, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Optics Letters 32, 3080-3082 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144251.
[CrossRef] [PubMed]

C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform," Opt. Express 15, 6846-6856 (2007), http://www.opticsinfobase.org/abstract.cfm?id=134979.
[CrossRef] [PubMed]

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, "Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density," Journal of Physical and Chemical Reference Data 27, 761-774 (1998), http://dx.doi.org/10.1063/1.556029.
[CrossRef]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

Holgado, M.

Ka’zmierczak, A.

C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
[CrossRef] [PubMed]

Karlsson, R.

R. Karlsson, A. Michaelsson, and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system," J. Immunol. Methods 145, 229-240 (1991), http://dx.doi.org/10.1016/0022-1759(91)90331-9.
[CrossRef] [PubMed]

Kim, D.-J.

Kim, G.

Kim, G.-H.

Kim, K.-J.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

Kwon, M.-S.

Kwon, O.-K.

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem. 75, 6544-6554 (2003), http://dx.doi.org/10.1021/ac0346712.
[CrossRef] [PubMed]

Lee, J.-M.

Levelt Sengers, J. M. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, "Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density," Journal of Physical and Chemical Reference Data 27, 761-774 (1998), http://dx.doi.org/10.1063/1.556029.
[CrossRef]

Lipson, M.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Markov, D.

D. Markov, D. Begari, and D. J. Bornhop, "Breaking the 10−7 Barrier for RI Measurements in Nanoliter Volumes," Anal. Chem. 74, 5438-5441 (2002), http://dx.doi.org/10.1021/ac020403c.
[CrossRef] [PubMed]

Mattsson, L.

R. Karlsson, A. Michaelsson, and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system," J. Immunol. Methods 145, 229-240 (1991), http://dx.doi.org/10.1016/0022-1759(91)90331-9.
[CrossRef] [PubMed]

Michaelsson, A.

R. Karlsson, A. Michaelsson, and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system," J. Immunol. Methods 145, 229-240 (1991), http://dx.doi.org/10.1016/0022-1759(91)90331-9.
[CrossRef] [PubMed]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem. 75, 6544-6554 (2003), http://dx.doi.org/10.1021/ac0346712.
[CrossRef] [PubMed]

Passaro, V. M.

Robinson, J. T.

Sánchez, B.

Schmidt, B. S.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta 620, 8-26 (2008), http://dx.doi.org/10.1016/j.aca.2008.05.022.
[CrossRef] [PubMed]

Sohlstr¨om, H.

Steier, W. H.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta 620, 8-26 (2008), http://dx.doi.org/10.1016/j.aca.2008.05.022.
[CrossRef] [PubMed]

Suter, J. D.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Wang, Z.

Z. Wang and D. J. Bornhop, "Dual-Capillary Backscatter Interferometry for High-Sensitivity Nanoliter-Volume Refractive Index Detection with Density Gradient Compensation," Anal. Chem. 77, 7872-7877 (2005), http://dx.doi.org/10.1021/ac050752h.
[CrossRef] [PubMed]

White, I. M.

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem. 75, 6544-6554 (2003), http://dx.doi.org/10.1021/ac0346712.
[CrossRef] [PubMed]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

Xu, Q.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Optics Letters 29, 1209-1211 (2004), http://dx.doi.org/10.1364/OL.29.001209.
[CrossRef] [PubMed]

Zhu, H.

Anal. Chem. (3)

Z. Wang and D. J. Bornhop, "Dual-Capillary Backscatter Interferometry for High-Sensitivity Nanoliter-Volume Refractive Index Detection with Density Gradient Compensation," Anal. Chem. 77, 7872-7877 (2005), http://dx.doi.org/10.1021/ac050752h.
[CrossRef] [PubMed]

D. Markov, D. Begari, and D. J. Bornhop, "Breaking the 10−7 Barrier for RI Measurements in Nanoliter Volumes," Anal. Chem. 74, 5438-5441 (2002), http://dx.doi.org/10.1021/ac020403c.
[CrossRef] [PubMed]

J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem. 75, 6544-6554 (2003), http://dx.doi.org/10.1021/ac0346712.
[CrossRef] [PubMed]

Analytica Chimica Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta 620, 8-26 (2008), http://dx.doi.org/10.1016/j.aca.2008.05.022.
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989), http://dx.doi.org/10.1063/1.102290.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004), http://dx.doi.org/10.1109/LPT.2004.826025.
[CrossRef]

J. Immunol. Methods (1)

R. Karlsson, A. Michaelsson, and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system," J. Immunol. Methods 145, 229-240 (1991), http://dx.doi.org/10.1016/0022-1759(91)90331-9.
[CrossRef] [PubMed]

Journal of Physical and Chemical Reference Data (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, "Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density," Journal of Physical and Chemical Reference Data 27, 761-774 (1998), http://dx.doi.org/10.1063/1.556029.
[CrossRef]

Lab on a Chip (1)

C. F. Carlborg, K. B. Gylfason, A. Ka’zmierczak, F. Dortu, M. J. Ba˜nuls, A. M. Catala, G. M. Kresbach, H. Sohlstr¨om, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, "A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips," Lab on a Chip 10, 281-290 (2010), http://dx.doi.org/10.1039/b914183a.
[CrossRef] [PubMed]

Opt. Eng. (1)

L. Eldada, "Advances in telecom and datacom optical components," Opt. Eng. 40, 1165-1178 (2001), http://dx.doi.org/10.1117/1.1372703.
[CrossRef]

Opt. Express (7)

F. Dell’Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007), http://dx.doi.org/10.1364/OE.15.004977.
[CrossRef] [PubMed]

C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform," Opt. Express 15, 6846-6856 (2007), http://www.opticsinfobase.org/abstract.cfm?id=134979.
[CrossRef] [PubMed]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008), http://www.opticsinfobase.org/abstract.cfm?id=148904.
[CrossRef] [PubMed]

J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, "Controlling temperature dependence of silicon waveguide using slot structure," Opt. Express 16, 1645-1652 (2008), http://dx.doi.org/10.1364/OE.16.001645.
[CrossRef] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008), http://dx.doi.org/10.1364/OE.16.004296.
[CrossRef] [PubMed]

M.-S. Kwon and W. H. Steier, "Microring-resonator-based sensor measuring both the concentration and temperature of a solution," Opt. Express 16, 9372-9377 (2008), http://dx.doi.org/10.1364/OE.16.009372.
[CrossRef] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9202 (2006), http://www.opticsinfobase.org/abstract.cfm?id=114595.
[CrossRef] [PubMed]

Optics Letters (2)

C. A. Barrios, K. B. Gylfason, B. S’anchez, A. Griol, H. Sohlstr¨om, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Optics Letters 32, 3080-3082 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144251.
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Optics Letters 29, 1209-1211 (2004), http://dx.doi.org/10.1364/OL.29.001209.
[CrossRef] [PubMed]

Other (10)

G. Maire, L. Vivien, G. Sattler, A. Kázmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, "High efficiency silicon nitride surface grating couplers," Opt. Express 16, 328-333 (2008). URL http://dx.doi.org/10.1364/OE.16.000328.
[CrossRef] [PubMed]

J. Blasco and C. A. Barrios, "Compact slot-waveguide/channel-waveguide mode-converter," in Conference on Lasers and Electro-Optics Europe 2005, p. 607 (2005), http://dx.doi.org/10.1109/CLEOE.2005.1568383.
[CrossRef]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, "Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator," IEEE Photonics Journal 1, 197-204 (2009), http://dx.doi.org/10.1109/JPHOT.2009.2031596.
[CrossRef]

C. A. Barrios, "Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor," in Optical Sensors 2009, F. Baldini, J. Homola, and R. A. Lieberman, eds., vol. 7356, pp. 735,605+ (SPIE, 2009), http://dx.doi.org/10.1117/12.820172.

A. Kázmierczak, F. Dortu, O. Schrevens, D. Giannone, L. Vivien, D. M. Morini, D. Bouville, E. Cassan, K. B. Gylfason, H. Sohlstr¨om, B. Sanchez, A. Griol, and D. Hill, "Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system," Opt. Eng. 48, 14,401+ (2009), http://dx.doi.org/10.1117/1.3067875.

Y. Kokubun, N. Funato, and M. Takizawa, "Athermal waveguides for temperatureindependent lightwave devices," IEEE Photon. Technol. Lett. 5, 1297-1300 (1993), http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=250049.
[CrossRef]

H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition," Appl. Opt. 34, 667+ (1995), http://www.opticsinfobase.org/abstract.cfm?id=45986.
[CrossRef] [PubMed]

D. R. Lide, ed., CRC handbook of chemistry and physics. (CRC; Taylor & Francis [distributor], 2008), http://www.worldcat.org/oclc/219996604.

H. Sohlström and M. Öberg, "Refractive index measurement using integrated ring resonators," in The 8th EuropeanConference on Integrated Optics, pp. 322-325 (1997).

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulatorbased slot waveguides," Appl. Phys. Lett. 86, 081,101+ (2005), http://dx.doi.org/10.1063/1.1871360.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic cross section of the coupling region of a slot-waveguide ring resonator refractive index sensor. To the left is the straight bus waveguide and to the right the bent ring waveguide. The opposite polarity of the thermo-optic coefficients κ of the solid waveguide materials and the liquid sample, utilized in athermal sensor design, is indicated on the ring waveguide end face.

Fig. 2.
Fig. 2.

A top view of the layout of the optical chip: Light is injected at the surface grating coupler (c) and split, by the multi-mode interference splitter (b), to the six sensing channels M1–M6 and the two reference channels REF1 and REF2. Inset are an optical micro-graph of the splitter (b); and electron micro-graphs of the grating coupler (c), and a slot-waveguide ring resonator (a), with an enlargement of the coupling region.

Fig. 3.
Fig. 3.

Example transmission spectra of sensor M1 operating in DI water at two different temperatures. The wavelength step in this particular measurement was 20 pm. The solid line is a combined Lorentzian and double cavity Fabry-Perot model. The obtained quality factor of this device was 3000 and the arrows indicate the extracted resonance wavelengths. The inset shows an enlargement of the region around resonance at 33°C

Fig. 4.
Fig. 4.

The left panels show the resonance wavelengths of (a) channel M1, and (b) channel M2, as functions of time during temperature stepping from 23.0°C to 33.0°C and a jump back to 23.0°C. The right panels show the corresponding resonance wavelengths of (c) channel M1, and (d) channel M2, as functions of temperature. The slopes of the fitted lines yield the temperature sensitivities of the sensors.

Fig. 5.
Fig. 5.

(a) The resonance wavelength shifts of sensors M1, M4, and their difference, as functions of time during injections of a dilution series of ethanol into a running buffer of DI water in M1. The inset shows a magnification of the measured baseline noise of the differential signal. (b) The corresponding shifts observed in M1 – M4 as a function of the refractive index shift of the injected solution. (c) Resonance wavelength shifts of channels M1, M2, and their difference, for repeated injections of 2% ethanol in M1 during a 9 K temperature transient. The dashed line M2' indicates an interpolated M2 signal with cross talk from the injections in M1 removed.

Tables (1)

Tables Icon

Table 1. Mass percentage (mass of ethanol/total mass of solution) of the injected ethanol calibration solutions and the corresponding shift from pure water refractive index.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 3 σ S = 2.1 pm 240 nm / RIU = 8.8 × 10 6 RIU ,

Metrics