Abstract

A method employing conjugated polymer thin film blends is shown to provide a simple and convenient way of greatly enhancing the ultraviolet response of silicon photodetectors. Hybrid organic semiconductor/silicon photodetectors are demonstrated using fluorene copolymers and give a quantum efficiency of 60% at 200 nm. The quantum efficiency is greater than 34% over the entire 200-620 nm range. These devices show promise for use in high sensitivity, low cost UV-visible photodetection and imaging applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Jones, “Photodiode array detectors in UV-VIS spectroscopy: part I,” Anal. Chem. 57(9), 1057A–1073A (1985).
    [CrossRef]
  2. V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
    [CrossRef]
  3. C. L. Joseph, “UV image sensors and associated technologies,” Exp. Astron. 6(1-2), 97–127 (1995).
    [CrossRef]
  4. M. M. Blouke, M. W. Cowens, J. E. Hall, J. A. Westphal, and A. B. Christensen, “Ultraviolet downconverting phosphor for use with silicon CCD imagers,” Appl. Opt. 19(19), 3318–3321 (1980).
    [CrossRef] [PubMed]
  5. E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
    [CrossRef]
  6. Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
    [CrossRef]
  7. H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
    [CrossRef]
  8. D. Ray and K. L. Narasimhan, “High response organic visible-blind ultraviolet detector,” Appl. Phys. Lett. 91(9), 093516 (2007).
    [CrossRef]
  9. N. Kristianpoller and D. Dutton, ““Optical Properties of “Liumogen”: A Phosphor for Wavelength Conversion,” Appl. Opt. 3(2), 287–290 (1964).
    [CrossRef]
  10. D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
    [CrossRef]
  11. M. W. Cowens, M. M. Blouke, T. Fairchild, and J. A. Westphal, “Coronene and liumogen as VUV sensitive coatings for Si CCD imagers: a comparison,” Appl. Opt. 19(22), 3727–3728 (1980).
    [CrossRef] [PubMed]
  12. H. P. Garnir and P.-H. Lefebvre, “Quantum efficiency of back-illuminated CCD detectors in the VUV region (30–200 nm),” Nucl. Instum. Meth. B 235(1-4), 530–534 (2005).
    [CrossRef]
  13. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [CrossRef] [PubMed]
  14. M. Ranger, D. Rondeau, and M. Leclerc, “New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping,” Macromolecules 30(25), 7686–7691 (1997).
    [CrossRef]
  15. D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
    [CrossRef]
  16. F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
    [CrossRef]
  17. A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
    [CrossRef]
  18. D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
    [CrossRef]
  19. D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
    [CrossRef]
  20. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
    [CrossRef]
  21. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
    [CrossRef]
  22. Z. V. Vardeny, S. A. Jeglinski, and P. A. Lane, (United States Department of Energy) “Enhanced Radiation Detectors Using Luminescent Materials,” US Patent Application 6211524 B1 (2001).
  23. Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
    [CrossRef]
  24. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
    [CrossRef] [PubMed]

2009 (1)

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

2008 (3)

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

2007 (1)

D. Ray and K. L. Narasimhan, “High response organic visible-blind ultraviolet detector,” Appl. Phys. Lett. 91(9), 093516 (2007).
[CrossRef]

2005 (3)

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

H. P. Garnir and P.-H. Lefebvre, “Quantum efficiency of back-illuminated CCD detectors in the VUV region (30–200 nm),” Nucl. Instum. Meth. B 235(1-4), 530–534 (2005).
[CrossRef]

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

2004 (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

2003 (1)

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

2001 (1)

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

1999 (1)

A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
[CrossRef]

1998 (1)

F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
[CrossRef]

1997 (3)

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

M. Ranger, D. Rondeau, and M. Leclerc, “New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping,” Macromolecules 30(25), 7686–7691 (1997).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

1996 (1)

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

1995 (2)

C. L. Joseph, “UV image sensors and associated technologies,” Exp. Astron. 6(1-2), 97–127 (1995).
[CrossRef]

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

1985 (1)

D. G. Jones, “Photodiode array detectors in UV-VIS spectroscopy: part I,” Anal. Chem. 57(9), 1057A–1073A (1985).
[CrossRef]

1980 (2)

1964 (1)

Amarasinghe, D.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Barbara, P. F.

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

Blouke, M. M.

Bradley, D. D. C.

F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Bulovic, V.

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Burrows, P. E.

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Calle, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Chanb, Y.

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Chen, Y.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Cheunga, C. H.

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Christensen, A. B.

Chu, B.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Chui, P. C.

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Cowens, M. W.

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Djurišic, A. B.

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Dogariua, A.

A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
[CrossRef]

Dutton, D.

Fairchild, T.

Finkenthal, M.

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Forrest, S. R.

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Friend, R. H.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Fu, D.-K.

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

Garbuzov, D. Z.

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Garnir, H. P.

H. P. Garnir and P.-H. Lefebvre, “Quantum efficiency of back-illuminated CCD detectors in the VUV region (30–200 nm),” Nucl. Instum. Meth. B 235(1-4), 530–534 (2005).
[CrossRef]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Greenham, N. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Grell, M.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Grice, A. W.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Gupta, R.

A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
[CrossRef]

Hall, J. E.

Hayes, G. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Heeger, A. J.

A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Holmes, A. B.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Hu, D.

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

Huang, C.-W.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Inbasekaran, M.

F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Jones, D. G.

D. G. Jones, “Photodiode array detectors in UV-VIS spectroscopy: part I,” Anal. Chem. 57(9), 1057A–1073A (1985).
[CrossRef]

Joseph, C. L.

C. L. Joseph, “UV image sensors and associated technologies,” Exp. Astron. 6(1-2), 97–127 (1995).
[CrossRef]

Kaita, R.

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Kessener, Y. A. R. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Kristianpoller, N.

Ku, S.-Y.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Kwong, C. Y.

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Leclerc, M.

M. Ranger, D. Rondeau, and M. Leclerc, “New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping,” Macromolecules 30(25), 7686–7691 (1997).
[CrossRef]

Lee, C.-S.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Lefebvre, P.-H.

H. P. Garnir and P.-H. Lefebvre, “Quantum efficiency of back-illuminated CCD detectors in the VUV region (30–200 nm),” Nucl. Instum. Meth. B 235(1-4), 530–534 (2005).
[CrossRef]

Li, T.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Li, W.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Li, X.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Lin, H.-W.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Lin, Y.-T.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Liu, Z. T.

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Long, X.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Majeski, R.

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Mellor, H.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Monroy, E.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Moos, H. W.

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Moratti, S. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Narasimhan, K. L.

D. Ray and K. L. Narasimhan, “High response organic visible-blind ultraviolet detector,” Appl. Phys. Lett. 91(9), 093516 (2007).
[CrossRef]

Omnès, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Phillips, R. T.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Ranger, M.

M. Ranger, D. Rondeau, and M. Leclerc, “New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping,” Macromolecules 30(25), 7686–7691 (1997).
[CrossRef]

Ray, D.

D. Ray and K. L. Narasimhan, “High response organic visible-blind ultraviolet detector,” Appl. Phys. Lett. 91(9), 093516 (2007).
[CrossRef]

Redecker, F. M.

F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
[CrossRef]

Rondeau, D.

M. Ranger, D. Rondeau, and M. Leclerc, “New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping,” Macromolecules 30(25), 7686–7691 (1997).
[CrossRef]

Ruseckas, A.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

Samuel, I. D. W.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Soukhanovskii, V. A.

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Stutman, D.

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Su, H.-C.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Su, Z.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Swager, T. M.

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

Thompson, M. E.

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Tsekoun, A. G.

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Turnbull, G. A.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

Vanden Bout, D. A.

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

Vasdekis, A. E.

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

Wang, H.

A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
[CrossRef]

Westphal, J. A.

Wong, K.-T.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Woo, E. P.

F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Wu, C.-C.

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

Yan, F.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

Yip, W.-T.

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

Zhang, G.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Zhu, J.

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Adv. Mater. (2)

H.-W. Lin, S.-Y. Ku, H.-C. Su, C.-W. Huang, Y.-T. Lin, K.-T. Wong, and C.-C. Wu, “Highly Efficient Visible-Blind Organic Ultraviolet Photodetectors,” Adv. Mater. 17(20), 2489–2493 (2005).
[CrossRef]

D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,” Adv. Mater. 21(1), 107–110 (2009).
[CrossRef]

Anal. Chem. (1)

D. G. Jones, “Photodiode array detectors in UV-VIS spectroscopy: part I,” Anal. Chem. 57(9), 1057A–1073A (1985).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

F. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Appl. Phys. Lett. 73(11), 1565 (1998).
[CrossRef]

D. Ray and K. L. Narasimhan, “High response organic visible-blind ultraviolet detector,” Appl. Phys. Lett. 91(9), 093516 (2007).
[CrossRef]

Z. Su, W. Li, B. Chu, T. Li, J. Zhu, G. Zhang, F. Yan, X. Li, Y. Chen, and C.-S. Lee, ““High response organic ultraviolet photodetector based on blend of 4,4’,4”-tri-(2-methylphenyl phenylamino)triphenylaine and tris-(8-hydroxyquinoline) gallium,” Appl. Phys. Lett. 93(10), 103309 (2008).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Exp. Astron. (1)

C. L. Joseph, “UV image sensors and associated technologies,” Exp. Astron. 6(1-2), 97–127 (1995).
[CrossRef]

J. Appl. Phys. (1)

D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, P. E. Burrows, V. Bulović, and M. E. Thompson, “Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings,” J. Appl. Phys. 80(8), 4644–4648 (1996).
[CrossRef]

Macromolecules (1)

M. Ranger, D. Rondeau, and M. Leclerc, “New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping,” Macromolecules 30(25), 7686–7691 (1997).
[CrossRef]

Nature (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Nucl. Instum. Meth. B (1)

H. P. Garnir and P.-H. Lefebvre, “Quantum efficiency of back-illuminated CCD detectors in the VUV region (30–200 nm),” Nucl. Instum. Meth. B 235(1-4), 530–534 (2005).
[CrossRef]

Proc. SPIE (1)

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. W. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254–259 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

V. A. Soukhanovskii, D. Stutman, M. Finkenthal, H. W. Moos, R. Kaita, and R. Majeski, “Compact collimated vacuum ultraviolet diagnostics for localized impurity measurements in fusion boundary plasmas,” Rev. Sci. Instrum. 72(8), 3270 (2001).
[CrossRef]

Science (2)

D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules,” Science 277(5329), 1074–1077 (1997).
[CrossRef]

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[CrossRef]

Synth. Met. (2)

A. Dogariua, R. Gupta, A. J. Heeger, and H. Wang, “Time-resolved Förster energy transfer in polymer blends,” Synth. Met. 100(1), 95–100 (1999).
[CrossRef]

Z. T. Liu, C. Y. Kwong, C. H. Cheunga, A. B. Djurišić, Y. Chanb, and P. C. Chui, “The characterization of the optical functions of BCP and CBP thin films by spectroscopic ellipsometry,” Synth. Met. 150(2), 159–163 (2005).
[CrossRef]

Other (1)

Z. V. Vardeny, S. A. Jeglinski, and P. A. Lane, (United States Department of Energy) “Enhanced Radiation Detectors Using Luminescent Materials,” US Patent Application 6211524 B1 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The molecular structures of poly[2,7-(9,9-dioctylfluorene)] (PFO), 4,4’-N,N’-dicarbazolyl-biphenyl (CBP) and poly(9,9’-dioctylfluorene-co-benzothiadiazole) ((F8)9BT).

Fig. 2
Fig. 2

Absorption and normalised photoluminescence spectra of (F8)9BT:CBP blended 80 wt%/20 wt% films, neat PFO and (F8)9BT films. The thickness of the films used for absorption measurements is given. The photoluminescence spectrum of (F8)9BT neat films were found to be the same as those in the blend (not shown). Photoluminescence spectra were excited at 325 nm.

Fig. 3
Fig. 3

Responsivity (fig. a) and quantum efficiency (fig. b) of the unmodified photodiode, and of the photodiodes enhanced with 53 nm PFO, 26 nm of neat (F8)9BT and 63 nm, 100 nm and 153 nm of 20 wt% (F8)9BT blended with CBP. Responsivity is shown in terms of photocurrent per unit incident power. Quantum efficiency is defined in terms of electrons of photocurrent per incident photon. All measurements were made at zero bias.

Fig. 4
Fig. 4

Reflectivity spectra of the unmodified photodiode, and of the photodiodes enhanced with 63 nm, 100 nm and 153 nm of 20 wt% (F8)9BT blended with CBP.

Fig. 5
Fig. 5

Predicted and experimental quantum efficiencies of photodiodes enhanced with 63 nm, 100 nm and 153 nm of 20 wt% (F8)9BT blended with CBP. Predicted curves use the experimentally determined values of 84% for the film PLQY and 91% for light coupling efficiency.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = ( 1 R ( λ ) ) ( 1 10 α ( λ ) )
T ( λ ) = ( 1 R ( λ ) ) 10 α ( λ )
β = 1 2 ( 1 + 1 1 n 2 )
Q = G ( λ ) L ( λ ) d λ L ( λ ) d λ
E ( λ ) = A ( λ ) Φ P L β Q + T ( λ ) G ( λ )

Metrics