Abstract

In this paper, we report on a substantial shift in the response of arrays of similarly sized Split Ring Resonators (SRRs), having a rectangular U-shaped form - and made respectively of aluminium and of gold. We also demonstrate that it is possible to obtain the polarization dependent LC peak in the visible spectrum - by using SRRs based on aluminium, rather than gold. The response of metallic SRRs scales linearly with size. At optical frequencies, metals stop behaving like nearly perfect conductors and begin displaying characteristically different behaviour, in accord with the Drude model. The response at higher frequencies, such as those in the visible and near infra-red, depends both on their size and on the individual properties of the metals used. A higher frequency limit has been observed in the polarization dependent response (in particular the LC resonance peak) of gold based SRRs in the near infrared region. By using aluminium based SRRs instead of gold, the higher frequency limit of the LC resonance can be further shifted into the visible spectrum.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. 10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
    [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  5. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
    [CrossRef]
  6. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [CrossRef] [PubMed]
  7. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
    [CrossRef]
  8. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
    [CrossRef] [PubMed]
  9. S. Tretyakov, “On geometrical scaling of split-ring and double bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
    [CrossRef]
  10. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE . 2nd December 2009.
  11. W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
    [CrossRef]
  12. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
    [CrossRef] [PubMed]
  13. N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
    [CrossRef]
  14. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
    [CrossRef]
  15. P. Marcos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(033401), 1–4 (2001).
  16. Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 4–7 (2007).
    [CrossRef]

2007 (4)

V. M. Shalaev, “Optical negative index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

S. Tretyakov, “On geometrical scaling of split-ring and double bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 4–7 (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

2006 (5)

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

2005 (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

2001 (1)

P. Marcos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(033401), 1–4 (2001).

2000 (1)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. 10(4), 509–514 (1968).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

Bank, S. R.

Biswas, R.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

Burger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

Chen, H.-T.

Chong, H. M. H.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

De La Rue, R. M.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

Economu, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

El-Kady, I.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

Etrich, C.

Giessen, H.

Gossard, A. C.

Highstre, C.

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Johnson, N. P.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

Khokhar, A. Z.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[CrossRef] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

Kuhl, J.

Lederer, F.

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

Linden, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

Marcos, P.

P. Marcos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(033401), 1–4 (2001).

McMeekin, S.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Sheng, Z.

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 4–7 (2007).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

Soukoulis, C. M.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

P. Marcos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(033401), 1–4 (2001).

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

Tretyakov, S.

S. Tretyakov, “On geometrical scaling of split-ring and double bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Varadan, V. V.

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 4–7 (2007).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. 10(4), 509–514 (1968).
[CrossRef]

Wegener, M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

Zentgraf, T.

Zhou, J.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

Zide, J. M. O.

Electron. Lett. (1)

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 4–7 (2007).
[CrossRef]

Metamaterials (Amst.) (1)

S. Tretyakov, “On geometrical scaling of split-ring and double bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000).
[CrossRef]

Phys. Rev. B (1)

P. Marcos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(033401), 1–4 (2001).

Phys. Rev. Lett. (2)

W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005).
[CrossRef]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004).
[CrossRef] [PubMed]

Sov. Phys. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. 10(4), 509–514 (1968).
[CrossRef]

Other (1)

http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE . 2nd December 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A single unit cell of the SRR array, with l being the overall length, w is the width of arm, h the thickness (height) of SRR - and δ the gap between arms. All measurements were performed normal (parallel to Z axis) to the surface and with: (a) TE measurements having the Electric field (dashed line) parallel to the SRR arms (parallel to the X-axis) and (b) TM measurements having the Electric field perpendicular to the SRR arms (parallel to Y-axis). In all our experiments the thickness (h) is kept constant at 50 nm.

Fig. 2
Fig. 2

Table showing the reflectance spectra of the different SRR patterns fabricated on silicon. The first two rows are 'large' (~800 nm) SRRs with: (a) SRR 1 Au and (b) SRR 1 Al The last two rows are 'small' (~150 nm) SRRs with: (c) SRR 2 Au and (b) SRR 2 Al, along with their corresponding experimental (solid curves) and simulation (dashed) spectra. The black curves (solid and dashed) are for TE polarisation - and the red curves (solid and dashed) are for TM polarisation measurements.

Fig. 3
Fig. 3

(a) LC peak positions of Al and Au SRRs fabricated on silicon. (b) Inset comparing the position of LC peaks for Al and Au SRRs of size ~200 to 75 nm

Fig. 4
Fig. 4

Table showing the reflectance spectra of the different SRR patterns fabricated on silica. The first three rows are small sized (~150 to 120 nm) aluminium SRRs with (a) SRR 3 Al (b) SRR 4 Al and (c) SRR 5 Al and the last row is small sized (~120 nm) gold SRR with (d) SRR 3 Au along with their corresponding experimental (solid curves) and simulation (dashed curves) spectra. Black curves (solid and dashed) are TE and Red curves (solid and dashed) are TM measurements.

Fig. 5
Fig. 5

(a) Field profile of SRR-4 Al at the plasmonic resonance peak (370 nm)

Fig. 5
Fig. 5

(b) Field profile of SRR-4 Al at the LC resonance peak (670 nm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω 0 = 1 ( L + L a d d ) ( C + C a d d )
C a d d = ε 0 ε r w h l e f f a n d L a d d = l e f f ε 0 w h ω p 2

Metrics