Abstract

Te-enriched chalcogenide glass Ge15As25Se15Te45 (GAST) is synthesized, thermo-optically characterized and used to fabricate a one dimensional photonic crystal cavity mode that is dynamically and reversibly tuned by temperature modulation. The optical cavity mode is designed using GAST and As2S3 glasses after fully determining their temperature dependence of the complex refractive indices in the visible and near infrared spectrum using spectroscopic ellipsometry. By making use of the very large thermo-optic coefficient (dn/dT = 4 × 10-4/°C) of GAST glass at 1.2 μm, the cavity mode of the multilayer was tuned reversibly more than 16 nm, which is, to the best of our knowledge, an order of magnitude larger for this kind of cavity modulation. Wide and dynamical spectral tuning of low bandgap chalcogenide glasses via temperature modulation can be utilized in photonic crystal based integrated optics, quantum dot resonance matching, solid state and gas laser components, and infrared photonic crystal fibers.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers

Gilles Benoit, Ken Kuriki, Jean-Francois Viens, John D. Joannopoulos, and Yoel Fink
Opt. Lett. 30(13) 1620-1622 (2005)

Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography

Peiqing Zhang, Zheming Zhao, Jianghui Zeng, Qian Zhang, Xunsi Wang, Feifei Chen, Xiang Shen, and Shixun Dai
Opt. Mater. Express 6(6) 1853-1860 (2016)

Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities

Michael W. Lee, Christian Grillet, Christelle Monat, Eric Mägi, Snjezana Tomljenovic-Hanic, Xin Gai, Steve Madden, Duk-Yong Choi, Douglas Bulla, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Express 18(25) 26695-26703 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).
  2. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [Crossref] [PubMed]
  3. M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
    [Crossref]
  4. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
    [Crossref]
  5. A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17, 1343–1348 (2000).
    [Crossref]
  6. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
    [Crossref]
  7. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
    [Crossref]
  8. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
    [Crossref] [PubMed]
  9. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
    [Crossref]
  10. G. Benoit, K. Kuriki, J. F. Viens, J. D. Joannopolous, and Y. Fink, “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers,” Opt. Lett. 30, 1620–1622 (2005).
    [Crossref] [PubMed]
  11. A. Faraon and J. Vuckovic, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
    [Crossref]
  12. C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).
  13. T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).
  14. I. Marki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable micro-cavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31, 513–515 (2006).
    [Crossref] [PubMed]
  15. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: A review,” J. Non-Cryst. Solids 257, 6–16 (1999).
    [Crossref]
  16. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [Crossref]
  17. H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
    [Crossref]
  18. G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
    [Crossref]
  19. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17, 22393–22400 (2009).
    [Crossref]
  20. D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
    [Crossref]
  21. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
    [Crossref]
  22. V. G. Taeed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14, 10371–10376 (2006).
    [Crossref]
  23. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
    [Crossref]
  24. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
    [Crossref] [PubMed]
  25. G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
    [Crossref]
  26. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
    [Crossref] [PubMed]
  27. A. R. Farouhi and I. Bloomer, “Optical dispersion relation for amourphous semiconductors and amourphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
    [Crossref]
  28. S. Kugler, J. Hegedus, and K. Kohary, “Modelling of photoinduced changes in chalcogenide glasses: a-Se and a-As2Se3,” J. Mater. Sci.: Mater. Electron. 18, 163–167 (2007).
    [Crossref]

2009 (6)

A. Faraon and J. Vuckovic, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[Crossref]

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17, 22393–22400 (2009).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

2008 (2)

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

2007 (4)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref] [PubMed]

S. Kugler, J. Hegedus, and K. Kohary, “Modelling of photoinduced changes in chalcogenide glasses: a-Se and a-As2Se3,” J. Mater. Sci.: Mater. Electron. 18, 163–167 (2007).
[Crossref]

2006 (4)

V. G. Taeed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14, 10371–10376 (2006).
[Crossref]

I. Marki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable micro-cavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31, 513–515 (2006).
[Crossref] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

2005 (2)

G. Benoit, K. Kuriki, J. F. Viens, J. D. Joannopolous, and Y. Fink, “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers,” Opt. Lett. 30, 1620–1622 (2005).
[Crossref] [PubMed]

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

2004 (1)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

2003 (2)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

2000 (2)

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: A review,” J. Non-Cryst. Solids 257, 6–16 (1999).
[Crossref]

1993 (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[Crossref]

1991 (1)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

1986 (1)

A. R. Farouhi and I. Bloomer, “Optical dispersion relation for amourphous semiconductors and amourphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Agarwal, A.

Agarwal, S. C.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: A review,” J. Non-Cryst. Solids 257, 6–16 (1999).
[Crossref]

Arnold, C. B.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

Arnold, J.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[Crossref]

Asona, T.

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

Baba, T.

Bayindir, M.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

G. Benoit, K. Kuriki, J. F. Viens, J. D. Joannopolous, and Y. Fink, “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers,” Opt. Lett. 30, 1620–1622 (2005).
[Crossref] [PubMed]

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

Bloomer, I.

A. R. Farouhi and I. Bloomer, “Optical dispersion relation for amourphous semiconductors and amourphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Bulla, D. A. P.

Carlie, N.

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Dana, A.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

Dirisu, A. O.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

Eggleton, B. J.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

V. G. Taeed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14, 10371–10376 (2006).
[Crossref]

El Melhaoui, L.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Fan, S.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Faraon, A.

A. Faraon and J. Vuckovic, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Farouhi, A. R.

A. R. Farouhi and I. Bloomer, “Optical dispersion relation for amourphous semiconductors and amourphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

Fedeli, J. M.

Fink, Y.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

G. Benoit, K. Kuriki, J. F. Viens, J. D. Joannopolous, and Y. Fink, “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers,” Opt. Lett. 30, 1620–1622 (2005).
[Crossref] [PubMed]

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

Freeman, D.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Fu, L.

Gai, X.

Galstian, T.

Gmachl, C. F.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

Grillet, C.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Hamachi, Y.

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

Hegedus, J.

S. Kugler, J. Hegedus, and K. Kohary, “Modelling of photoinduced changes in chalcogenide glasses: a-Se and a-As2Se3,” J. Mater. Sci.: Mater. Electron. 18, 163–167 (2007).
[Crossref]

Herzig, H. P.

Howard, S. S.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

Hu, J.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Joannopolous, J. D.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

G. Benoit, K. Kuriki, J. F. Viens, J. D. Joannopolous, and Y. Fink, “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers,” Opt. Lett. 30, 1620–1622 (2005).
[Crossref] [PubMed]

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[Crossref]

Karnutsch, C.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

Kimerling, L.

Kohary, K.

S. Kugler, J. Hegedus, and K. Kohary, “Modelling of photoinduced changes in chalcogenide glasses: a-Se and a-As2Se3,” J. Mater. Sci.: Mater. Electron. 18, 163–167 (2007).
[Crossref]

Kondakci, H. E.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

Koylu, O.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

Krolikowska, M.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[Crossref]

Kugler, S.

S. Kugler, J. Hegedus, and K. Kohary, “Modelling of photoinduced changes in chalcogenide glasses: a-Se and a-As2Se3,” J. Mater. Sci.: Mater. Electron. 18, 163–167 (2007).
[Crossref]

Kunishi, W.

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

G. Benoit, K. Kuriki, J. F. Viens, J. D. Joannopolous, and Y. Fink, “Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers,” Opt. Lett. 30, 1620–1622 (2005).
[Crossref] [PubMed]

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Le Foulgoc, K.

Lee, M. W.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Lee, Y.

Lee, Y. H.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

Littler, I. C.

Liu, Z.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Lyan, P.

Madden, S.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Magi, E. C.

Marki, I.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Monat, C.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

Moss, D. J.

Nakamura, M.

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

Noda, S.

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

Paesler, M. A.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

V. G. Taeed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14, 10371–10376 (2006).
[Crossref]

Petit, L.

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Pfeiffer, G.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

Richardson, K.

Rochette, M.

Rode, A.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Ruan, Y.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Rue, R. M. De La

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

Saliminia, A.

Salt, M.

Sanghera, J. S.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: A review,” J. Non-Cryst. Solids 257, 6–16 (1999).
[Crossref]

Saygin-Hinczewski, D.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Smith, C. L.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

Smith, C. L. C.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007).
[Crossref] [PubMed]

Song, B.S.

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

Song, S.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

Sorien, F.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Sorin, F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

Stanley, R.

Steel, M. J.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

Sterke, C. M. De

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Suzuki, K.

Taeed, V. G.

Tarasov, V.

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

Tomljenovic-Hanic, S.

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[Crossref] [PubMed]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

Viens, J.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

Viens, J. F.

Villeneuve, A.

Villeneuve, P. R.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Vuckovic, J.

A. Faraon and J. Vuckovic, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Yaman, M.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Adv. Mat. (1)

G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopolous, and Y. Fink, “Static and dynamic properties of optical microcavities in photonic bandgap yarns,” Adv. Mat. 15, 2053–2056 (2003).
[Crossref]

Appl. Phys. Lett. (4)

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94, 11110 (2009).
[Crossref]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89, 041115 (2006).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

A. Faraon and J. Vuckovic, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[Crossref]

Electron. Lett. (1)

T. Asona, W. Kunishi, M. Nakamura, B.S. Song, and S. Noda, “Dynamical wavelength tuning of channel-drop device in two dimensional photonic crystal slab,” Electron. Lett. 41, 1–2 (2005).

IEEE J. Quantum Electron. (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorien, J. Arnold, J. D. Joannopolous, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

S. Kugler, J. Hegedus, and K. Kohary, “Modelling of photoinduced changes in chalcogenide glasses: a-Se and a-As2Se3,” J. Mater. Sci.: Mater. Electron. 18, 163–167 (2007).
[Crossref]

J. Non-Cryst. Solids (3)

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: A review,” J. Non-Cryst. Solids 257, 6–16 (1999).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev., 1–13 (2009).

Nat. Photonics (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Nature Mat. (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mat. 6, 336–347 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Photon. Nanostructures (1)

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. De Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostructures 6, 3–11 (2008).
[Crossref]

Phys. Rev. B (1)

A. R. Farouhi and I. Bloomer, “Optical dispersion relation for amourphous semiconductors and amourphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[Crossref]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The refractive index n, and extinction coefficient k, of (a) As2S3 and (b) GAST thin film chalcogenide glasses obtained by spectroscopic ellipsometry at 25 and 125°C. Both extinction coefficients shift to longer wavelengths with increasing temperature. The thermo-optic coefficient is higher for the GAST glass due to low bandgap energy, which also changes sign and becomes positive after 745 nm. (c) Spectroscopic thermo-optic coefficients of As2S3 and GAST glasses. (d) Measured thin film thicknesses as a function of temperature.

Fig. 2.
Fig. 2.

The SEM picture of a one dimensional photonic crystal based optical cavity fabricated with high index contrast Ge15As25Se15Te45 and As2S3 chalcogenide glasses.

Fig. 3.
Fig. 3.

(a) Simulation of the temperature dependence of the cavity mode between 25–125 °C in the cavity region. The cavity shifts towards larger wavelengths with increasing temperature. (b) Simulation and experimental results of the photonic band structure based on GAST and As2S3 glasses.

Fig. 4.
Fig. 4.

(a) Reversible tuning of photonic band gap cavity mode by temperature modulation with a dynamical range of 16 nm. (b) The cavity mode shifts to longer (shorter) wavelengths by increasing (decreasing) temperature. The hysteresis is removed with the first heating/cooling cycle afterwhich the cavity follows the lower path.

Metrics