Abstract

In this paper, we theoretically and experimentally demonstrated the residual chromatic dispersion (CD) monitoring of 100-Gbit/s carrier suppress return-to-zero differential quadrature phase shift keying (CS-RZ DQPSK) signals by evaluating the asymmetry ratio of delay tap asynchronous sampling. This scheme can easily differentiate the positive and negative residual CD of the fiber link. The resolution of this scheme is better than 8ps/nm and the measurable range is around ± 24ps/nm for 100Gbit/s CS-RZ DQPSK signals. We can also simultaneously realize both signed CD monitoring and demodulation of CS-RZ DQPSK signal based on only one demodulator.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
    [CrossRef]
  2. G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18(12), 1639–1648 (2000).
    [CrossRef]
  3. N. Liu, W. D. Zhong, Y. J. Wen, and Z. Li, “New transmitter configuration for subcarrier multiplexed DPSK systems and its applications to chromatic dispersion monitoring,” Opt. Express 15(3), 839–844 (2007).
    [CrossRef] [PubMed]
  4. G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
    [CrossRef]
  5. S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
    [CrossRef]
  6. H. Kawakami, E. Yoshida, H. Hubota and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” OECC, WeK-3, (2008).
  7. Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
    [CrossRef]
  8. S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” OFC, OThP5, (2006).
  9. B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
    [CrossRef]
  10. B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Networking 6(11), 1257–1269 (2007).
    [CrossRef]
  11. T. Anderson, D. Beaman, J. C. Li, O. Jerphagnon, E. L. Rouzic, F. Neddam and S. Salaun, “Demonstration of simultaneous OSNR and CD monitoring using asynchronous delay tap sampling on an 800km WDM test bed,” ECOC, P. 9.3.4, (2009).
  12. J. Zhao, Z. Li, D. Liu, L. Cheng, C. Lu, and H. Y. Tam, “NRZ-DPSK and RZ-DPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling,” J. Lightwave Technol. 27(23), 5295–5301 (2009).
    [CrossRef]
  13. Z. Li, J. Zhao, L. Cheng, Y. Yang, C. Lu, A. P. T. Lau, H. Y. Tam and P. K. A. Wai, “100Gbit/s RZ-DQPSK signal monitoring using delay tap sampling and asymmetry ratio evaluation,” OECC, FW7, (2009).

2009 (2)

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

J. Zhao, Z. Li, D. Liu, L. Cheng, C. Lu, and H. Y. Tam, “NRZ-DPSK and RZ-DPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling,” J. Lightwave Technol. 27(23), 5295–5301 (2009).
[CrossRef]

2008 (1)

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

2007 (2)

N. Liu, W. D. Zhong, Y. J. Wen, and Z. Li, “New transmitter configuration for subcarrier multiplexed DPSK systems and its applications to chromatic dispersion monitoring,” Opt. Express 15(3), 839–844 (2007).
[CrossRef] [PubMed]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Networking 6(11), 1257–1269 (2007).
[CrossRef]

2006 (2)

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

2000 (1)

1986 (1)

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
[CrossRef]

Bhandare, S.

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Blumenthal, D. J.

Cheng, L.

Dimmick, T. E.

Fauzi, A.

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Hatton, W.

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
[CrossRef]

Hidayat, A.

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Kitayama, K.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Networking 6(11), 1257–1269 (2007).
[CrossRef]

Kozicki, B.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Networking 6(11), 1257–1269 (2007).
[CrossRef]

Lbrahim, S. K.

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Li, G.

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

Li, Z.

Liu, D.

Liu, N.

Lu, C.

Maruta, A.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Networking 6(11), 1257–1269 (2007).
[CrossRef]

Nishimura, M.

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
[CrossRef]

Noe, R.

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Pendock, G. J.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Rossi, G.

Sandel, D.

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Shieh, W.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Tam, H. Y.

Wen, Y. J.

Yi, X.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Yu, C.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Zhao, J.

Zhong, W. D.

IEE Proc., Optoelectron. (1)

S. K. Lbrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noe, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Networking (1)

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Networking 6(11), 1257–1269 (2007).
[CrossRef]

Opt. Express (1)

Other (4)

H. Kawakami, E. Yoshida, H. Hubota and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” OECC, WeK-3, (2008).

T. Anderson, D. Beaman, J. C. Li, O. Jerphagnon, E. L. Rouzic, F. Neddam and S. Salaun, “Demonstration of simultaneous OSNR and CD monitoring using asynchronous delay tap sampling on an 800km WDM test bed,” ECOC, P. 9.3.4, (2009).

S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” OFC, OThP5, (2006).

Z. Li, J. Zhao, L. Cheng, Y. Yang, C. Lu, A. P. T. Lau, H. Y. Tam and P. K. A. Wai, “100Gbit/s RZ-DQPSK signal monitoring using delay tap sampling and asymmetry ratio evaluation,” OECC, FW7, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for NRZ-DPSK signal

Fig. 2
Fig. 2

(a) −160ps/nm; (b) 0ps/nm; (c) + 128ps/nm residual CD

Fig. 3
Fig. 3

(a) −160ps/nm; (b) 0ps/nm; (c) + 128ps/nm residual CD

Fig. 4
Fig. 4

Measured waveforms of demodulated CS-RZ DQPSK signals (a) −31ps/nm; (b) 0ps/nm; (c) 31ps/nm residual CD

Fig. 5
Fig. 5

Eye diagram of demodulated CS-RZ DQPSK signals with different residual CD (a) −31ps/nm; (b) 0ps/nm; (c) 31ps/nm residual CD

Fig. 6
Fig. 6

Simulated delay-tap plots with different residual CD (a)0ps/nm; (b)-16ps/nm; (c)16ps/nm; (d)-24ps/nm; (e)24ps/nm

Fig. 7
Fig. 7

Simulated asymmetric ratio of delay-tap plots

Fig. 8
Fig. 8

Experimental setup of 100Gbit/s CS-RZ DQPSK signal; SMF: single mode fiber; DCM: dispersion compensation module; EDFA: Erbium doped fiber amplifier; BPF: band pass filter; DSP: digital signal processing;

Fig. 9
Fig. 9

Experimental delay-tap plots with different residual CD (a)0ps/nm; (b)-16ps/nm; (c)16ps/nm; (d)-22ps/nm; (e)24ps/nm

Fig. 10
Fig. 10

Measured asymmetry ratio of delay-tap plots

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Asymmetry_ratio = L 0 L 1

Metrics