Abstract

We suggest a new approach for selective trapping of light absorbing particles in gases by multiple optical bottle-beam-like traps created by volume speckle field. We demonstrate stable simultaneous confinement of a few thousand micro-particles in air with a single low-power laser beam. The size distribution of trapped particles exhibits a narrow peak near the average size of an optical speckle. Thus, the speckle-formed traps act as a sieve with the holes selecting particles of a similar size.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
    [CrossRef] [PubMed]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  5. J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008).
    [CrossRef]
  6. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
    [CrossRef] [PubMed]
  7. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
    [CrossRef]
  8. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
    [CrossRef] [PubMed]
  9. D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutierrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Exp. 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550.
    [CrossRef]
  10. J. B. Wills, K. J. Knox, and J. P. Reid, "Optical control and characterisation of aerosol," Chem. Phys. Lett. 481, 153-165 (2009).
    [CrossRef]
  11. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.
  12. M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
    [CrossRef]
  13. S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
    [CrossRef]
  14. J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
    [CrossRef] [PubMed]
  15. T. B. Jones, Electromechanics of Particles (Cambridge University Press, NY, 1995).
    [CrossRef]
  16. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, "Optical guiding of absorbing nanoclusters in air," Opt. Express 17, 5743-5757 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5743
    [CrossRef] [PubMed]
  17. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode,W. Krolikowski, and Yu. S. Kivshar, "Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment," Opt. Express 17, 8201-8211 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8201
    [CrossRef] [PubMed]
  18. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  19. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5831.
    [CrossRef] [PubMed]
  20. J. Arlt and M. J. Padgett, "Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam," Opt. Lett. 25, 191-193 (2000).
    [CrossRef]
  21. N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279, 229-234 (2007).
    [CrossRef]
  22. V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, "Generation of optical bottle beams by incoherent white-light vortices," Opt. Express 16, 20902-20907 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20902
    [CrossRef] [PubMed]
  23. L. Isenhower, W. Williams, A. Dally, and M. Saffman, "Atom trapping in an interferometrically generated bottle beam trap," Opt. Lett. 34, 1159-1161 (2009).
    [CrossRef] [PubMed]
  24. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts and Co., CO, 2007).
  25. V. Shvedov, W. Krolikowski, A. Volyar, D. Neshev, A. Desyatnikov, and Yu. Kivshar, "Focusing and correlation properties of white-light optical vortices," Opt. Express 13, 7393-7398 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7393
    [CrossRef] [PubMed]
  26. A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
    [CrossRef]
  27. A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
    [CrossRef]
  28. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Z. Krolikowski, and Y. S. Kivshar, "Optical Pipeline for Transport of Particles," in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuC4, http://www.opticsinfobase.org/abstract.cfm?URI=OTA-2009-OTuC4
  29. M. Born and E. Wolf, Principles of Optics (7th Ed., Cambridge University Press, 2003).
  30. A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
    [CrossRef]
  31. K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Topology of Light’s Darkness," Phys. Rev. Lett. 102, 143902 (2009).
    [CrossRef] [PubMed]
  32. S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
    [CrossRef]
  33. A. B. Pluchino, "Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser," Appl. Opt. 22, 1861 (1983).
    [CrossRef] [PubMed]

2009 (6)

2008 (4)

V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, "Generation of optical bottle beams by incoherent white-light vortices," Opt. Express 16, 20902-20907 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20902
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008).
[CrossRef]

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

2007 (1)

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279, 229-234 (2007).
[CrossRef]

2005 (2)

2004 (1)

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

2003 (2)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

2002 (1)

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

2000 (2)

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

J. Arlt and M. J. Padgett, "Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam," Opt. Lett. 25, 191-193 (2000).
[CrossRef]

1999 (1)

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

1998 (1)

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

1993 (1)

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

1988 (1)

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

1983 (1)

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Anand, S.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Arlt, J.

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

Ashkin, A.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008).
[CrossRef]

Beresnev, S.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Bloisi, F.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Blum, J.

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Bokor, N.

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279, 229-234 (2007).
[CrossRef]

Bulcock, S.

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Burnham, D. R.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Chernyak, V.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Christy, A. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

Dally, A.

Davidson, N.

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279, 229-234 (2007).
[CrossRef]

De Nicola, S.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dennis, M. R.

K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Topology of Light’s Darkness," Phys. Rev. Lett. 102, 143902 (2009).
[CrossRef] [PubMed]

Desyatnikov, A.

Desyatnikov, A. S.

Dewara, N.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Elliman, R. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

Finizo, A.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Fomyagin, G.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Friese, M. E. J.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Gamaly, E. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Grier, D. G.

M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5831.
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Hyde, S. T.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Isenhower, L.

Izdebskaya, Y. V.

Kivshar, Yu.

Kivshar, Yu. S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, "Optical control and characterisation of aerosol," Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

Krause, M.

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Krolikowski, W.

Ladavac, K.

Lee, S.-H.

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

Luther-Davies, B

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

Luther-Davies, B.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Martellucci, S.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008).
[CrossRef]

McGloin, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

McKenzie, D. R.

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

Mormile, P.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Neshev, D.

Nieminen, T. A.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

O’Holleran, K.

K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Topology of Light’s Darkness," Phys. Rev. Lett. 102, 143902 (2009).
[CrossRef] [PubMed]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

Padgett, M. J.

Pierattini, G.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Pluchino, A. B.

Polin, M.

Quartieri, J.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Reid, J. P.

J. B. Wills, K. J. Knox, and J. P. Reid, "Optical control and characterisation of aerosol," Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

Rode, A. V.

A. S. Desyatnikov, V. G. Shvedov, A. V. Rode,W. Krolikowski, and Yu. S. Kivshar, "Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment," Opt. Express 17, 8201-8211 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8201
[CrossRef] [PubMed]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, "Optical guiding of absorbing nanoclusters in air," Opt. Express 17, 5743-5757 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5743
[CrossRef] [PubMed]

V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, "Generation of optical bottle beams by incoherent white-light vortices," Opt. Express 16, 20902-20907 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20902
[CrossRef] [PubMed]

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Roichman, Y.

Rubinsztein-Dunlop, H.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Rudd, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Saffman, M.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Shvedov, V.

Shvedov, V. G.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Steinbach, J.

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Summers, M. D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Veinger, A. I.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

Vicari, L.

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Volyar, A.

Williams, W.

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, "Optical control and characterisation of aerosol," Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

Adv. Quant. Chem. (1)

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (2)

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999).
[CrossRef]

Appl. Phys. B (1)

S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982).
[CrossRef]

Appl. Surf. Science (1)

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

J. B. Wills, K. J. Knox, and J. P. Reid, "Optical control and characterisation of aerosol," Chem. Phys. Lett. 481, 153-165 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Eur. Phys. J. E (1)

J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004).
[CrossRef] [PubMed]

Faraday Discuss. (1)

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008).
[CrossRef]

Nature (3)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279, 229-234 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Fluids A (1)

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Topology of Light’s Darkness," Phys. Rev. Lett. 102, 143902 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Other (6)

J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts and Co., CO, 2007).

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Z. Krolikowski, and Y. S. Kivshar, "Optical Pipeline for Transport of Particles," in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuC4, http://www.opticsinfobase.org/abstract.cfm?URI=OTA-2009-OTuC4

M. Born and E. Wolf, Principles of Optics (7th Ed., Cambridge University Press, 2003).

T. B. Jones, Electromechanics of Particles (Cambridge University Press, NY, 1995).
[CrossRef]

D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutierrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Exp. 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550.
[CrossRef]

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.

Supplementary Material (2)

» Media 1: MOV (9598 KB)     
» Media 2: MOV (2181 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. The diaphragm D on the diffuser is imaged by the lens to a cigar-shaped trapping region as shown by a (green) image of the speckled intensity pattern.

Fig. 2.
Fig. 2.

Geometry and dynamics of particle trapping. (a) Image of the laser light scattered from the particles trapped in the speckled bottle beam, the axial view in (b) is obtained with the help of additional white-light illumination. A few thousands particles are captured simultaneously in the cigar-shaped trapping region of length L = 6.5 mm and diameter Db = 570μm. (c-e) Temporal evolution of the selective optical trapping, see Media 1. The trap is being gradually populated with particles captured in the dark regions of the speckle pattern. The inverse process, i.e. the clearing of the trap from particles when power is gradually reduced, can be seen in Media 2.

Fig. 3.
Fig. 3.

Analysis of the particles from the speckle trap. (a-c) Scanning electron microscope images of agglomerates of carbon nanoclusters collected from the trap: the area with five particles marked by a white square in (a) is magnified in (b) and the arrow shows one of the particles in (c). (d) A histogram with the size distribution of trapped particles. The green color represents the standard deviation range. (e) Computer modeling of speckle intensity distribution for a small volume, 5 × 5 × 15 μm3, inside the trapping region. Blue surfaces enclose high-intensity speckles; voids correspond to the dark (low-intensity) bottle-traps; the green spheres represent trapped particles of diameters 1.5 μm (left) and 2 μm (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = 2.44 λ ( z a D a ) = 1.7 μm and ε = 16 λ ( z a D a ) 2 = 14.9 μm

Metrics