Abstract

We present a tunable optical delay line based on the use of a single chirped fiber Bragg grating written into a standard single mode optical fiber. In the proposed scheme, the delay is induced through the Bragg grating differential group delay curve. This is achieved by launching orthogonally polarized optical pulses in both directions into the Bragg grating and by controlling its local birefringence. This bidirectional propagation allows to compensate the second-order dispersion. The setup is suitable to delay pulses with a spectral width just less than the grating reflection bandwidth, which is particularly useful in the context of forthcoming wavelength division multiplexing ultra-high bit rate lightwave systems. In this work, the performances of the setup are investigated using a pulsed laser delivering 6.3 ps Fourier transform limited pulses at 1548 nm. A maximum delay of 120 ps (about 20 times the pulse width) is reported experimentally.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides, Opt. Expr. 16, 10349-10357 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10349
  2. E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Expr. 13, 1334–1345 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1334
  3. J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
    [CrossRef]
  4. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  5. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
    [CrossRef]
  6. Y. Liu, J. Yang, J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
    [CrossRef]
  7. V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
    [CrossRef]
  8. M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).
  9. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12(10), 847–849 (1987).
    [CrossRef] [PubMed]
  10. C. Yang, S. Yazdanfar, J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29(7), 685–687 (2004).
    [CrossRef] [PubMed]
  11. X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
    [CrossRef]
  12. S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Expr.13, 9954–9960 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-9954
  13. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
    [CrossRef]
  14. D. Wang, M. Matthews, J. Brennan Iii, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5741 .
    [CrossRef] [PubMed]
  15. C. Wang, J. Yao, “Fourier Transform ultrashort optical pulses shaping using a single chirped fiber Bragg grating,” Photon. Technol. Lett. 21(19), 1375–1377 (2009).
    [CrossRef]

2009 (1)

C. Wang, J. Yao, “Fourier Transform ultrashort optical pulses shaping using a single chirped fiber Bragg grating,” Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[CrossRef]

2007 (1)

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

2006 (1)

M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).

2005 (1)

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

2004 (2)

D. Wang, M. Matthews, J. Brennan Iii, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5741 .
[CrossRef] [PubMed]

C. Yang, S. Yazdanfar, J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29(7), 685–687 (2004).
[CrossRef] [PubMed]

2003 (1)

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

2002 (1)

Y. Liu, J. Yang, J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

2000 (1)

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

1997 (2)

J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

1987 (1)

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12(10), 847–849 (1987).
[CrossRef] [PubMed]

Andrés, M. V.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Bette, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Brennan Iii, J.

D. Wang, M. Matthews, J. Brennan Iii, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5741 .
[CrossRef] [PubMed]

Campopiano, S.

M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Capmany, J.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Caucheteur, C.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Cruz, J. L.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Cusano, A.

M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Cutolo, A.

M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Ding, L.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Garcia-Olcina, R.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Italia, V.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Izatt, J.

C. Yang, S. Yazdanfar, J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29(7), 685–687 (2004).
[CrossRef] [PubMed]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Liu, Y.

Y. Liu, J. Yang, J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Lu, C.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Matthews, M.

D. Wang, M. Matthews, J. Brennan Iii, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5741 .
[CrossRef] [PubMed]

Mégret, P.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Ortega, B.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Ouellette, F.

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12(10), 847–849 (1987).
[CrossRef] [PubMed]

Pastor, D.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Pisco, M.

M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Sales, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Wang, C.

C. Wang, J. Yao, “Fourier Transform ultrashort optical pulses shaping using a single chirped fiber Bragg grating,” Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[CrossRef]

Wang, D.

D. Wang, M. Matthews, J. Brennan Iii, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5741 .
[CrossRef] [PubMed]

Wang, Y.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

Wei, F.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

Wuilpart, M.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Yang, C.

C. Yang, S. Yazdanfar, J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29(7), 685–687 (2004).
[CrossRef] [PubMed]

Yang, J.

Y. Liu, J. Yang, J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Yang, X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

Yao, J.

C. Wang, J. Yao, “Fourier Transform ultrashort optical pulses shaping using a single chirped fiber Bragg grating,” Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[CrossRef]

Y. Liu, J. Yang, J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Yazdanfar, S.

C. Yang, S. Yazdanfar, J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29(7), 685–687 (2004).
[CrossRef] [PubMed]

Yi, X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

Zhong, W. D.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

M. Pisco, S. Campopiano, A. Cutolo, A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE.Photon. Technol. Lett. 18, 2511–2553 (2006).

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

V. Italia, M. Pisco, S. Campopiano, A. Cusano, A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable delay lines,” J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Opt. Express (1)

D. Wang, M. Matthews, J. Brennan Iii, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5741 .
[CrossRef] [PubMed]

Opt. Lett. (2)

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12(10), 847–849 (1987).
[CrossRef] [PubMed]

C. Yang, S. Yazdanfar, J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29(7), 685–687 (2004).
[CrossRef] [PubMed]

Photon. Technol. Lett. (5)

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” Photon. Technol. Lett. 15(5), 754–756 (2003).
[CrossRef]

C. Wang, J. Yao, “Fourier Transform ultrashort optical pulses shaping using a single chirped fiber Bragg grating,” Photon. Technol. Lett. 21(19), 1375–1377 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[CrossRef]

Y. Liu, J. Yang, J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Trans. Microw. Theory Tech. (1)

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[CrossRef]

Other (3)

Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides, Opt. Expr. 16, 10349-10357 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10349

E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Expr. 13, 1334–1345 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1334

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Expr.13, 9954–9960 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-9954

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Simulated reflected amplitude and group delay spectra of a CFBG in the presence of birefringence for two orthogonally polarized axes (solid and dashed lines). (b) Associated DGD curve (parameters used for the simulation: L = 15 cm, Λ0 = 531.5 nm, C = 0.12 nm/cm, δn = 4 × 10−4 and Δn = 8 × 10−5).

Fig. 2
Fig. 2

(a) DGD evolution vs. birefringence for 15 cm CFBGs characterized by different chirp coefficients, (b) useful bandwidth evolution and (c) corresponding DGD-bandwidth product.

Fig. 3
Fig. 3

Schematic of the experimental set-up. The optical paths followed by the orthogonally polarized pulses are represented in different colours (red and blue).

Fig. 4
Fig. 4

Reflected amplitude spectrum (black) and associated group delay evolutions (short wavelengths port (blue) – long wavelengths port (red)) of the used CFBG.

Fig. 5
Fig. 5

Autocorrelation traces of the original pulse (black line), single-reflected pulse (red line) and double-reflected pulse (blue line).

Fig. 6
Fig. 6

Eye diagram measured at 10 Gb/s with single-reflected pulses (left) and double-reflected pulses (right). Legend: 20 ps/division (x-axis), 25 mV/division (y-axis).

Fig. 7
Fig. 7

Induced optical delay on the double reflected pulses as a function of the transverse force applied on the CFBG (input pulses at 1548 nm). Squares: experimental measurements, red line: linear fit.

Fig. 8
Fig. 8

Autocorrelation traces of double reflected pulses after propagation through the unloaded CFBG (black curve) and the CFBG transversally loaded with a force of 400 N (blue curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DGD ( l ) = | t x ( l ) t y ( l ) |

Metrics