Abstract

We demonstrate an optical hitless bypass switch based on nanomechanical proximity perturbation for high-bitrate transparent networks. Embedded in a single-level π-imbalanced Mach-Zehnder interferometer, the two nanomechanical-based Δβ-directional couplers permit broadband signal rerouting on-chip, while the selected wavelength remains unaffected at all times for optical filter reconfiguration. The optical hitless switch is implemented in the silicon nanophotonics platform, with experimental measurements matching well with numerical and theoretical modeling.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  3. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
    [CrossRef]
  4. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
    [CrossRef]
  5. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  6. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips”, Proc. IEEE Special Issue on Silicon Photonics 97, 1166 – 1185 (2009).
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  8. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, John Wiley and Sons, Inc., New York, NY, USA, 1999.
  9. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
    [CrossRef]
  10. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z – 68720Z–12 (2008).
  11. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
    [CrossRef]
  12. C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
    [CrossRef]
  13. V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003).
    [CrossRef]
  14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
    [CrossRef]
  15. M. A. Popović, H. A. Haus, and M. R. Watts, “General approach to hitless switching and FSR extension for resonators in integrated photonic circuits,” in Proc. of Optical Fiber Communication Conference, paper OWI66 (2006).
  16. M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006).
    [CrossRef] [PubMed]
  17. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” in Proc. of Conference on Lasers and Electro-Optics, postdeadline paper CPDA2 (2007).
  18. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Proc. of Optical Fiber Communication Conference, paper OTuF4 (2008).
  19. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
    [CrossRef]
  20. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  21. R. E. Scotti, C. Madsen, C. H. Henry, G. Lenz, Y. P. Li, H. Presby, and A. White, “A hitless reconfigurable add-drop multiplexer for WDM networks utilizing planar waveguides, thermo-optic switches and uv-induced gratings,” in Proc. of Optical Fiber Communication Conference, 142 – 143 (1998).
  22. P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
    [CrossRef] [PubMed]
  23. M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [CrossRef]
  24. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  25. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
    [CrossRef] [PubMed]
  26. H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
    [CrossRef]
  27. M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
    [CrossRef]
  28. H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973).
    [CrossRef]
  29. H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall, 1984).
  30. A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [CrossRef]
  31. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
    [CrossRef]
  32. Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998).
    [CrossRef]
  33. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  34. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  35. M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
    [CrossRef] [PubMed]
  36. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
    [CrossRef]
  37. E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
    [CrossRef]
  38. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
    [CrossRef]
  39. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.
  40. Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
    [CrossRef]
  41. M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).
  42. C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992).
    [CrossRef]
  43. P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
    [CrossRef]

2009

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

2008

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

2007

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

2006

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006).
[CrossRef] [PubMed]

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
[CrossRef] [PubMed]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

2005

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

2003

V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003).
[CrossRef]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

2002

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
[CrossRef]

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

1998

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

1997

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

1994

M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).

1992

C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992).
[CrossRef]

1987

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1976

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

1975

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

1973

H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973).
[CrossRef]

A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

1966

P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Amarnath, K.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bakke, T.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Biberman, A.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bogert, G.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Cappuzzo, M.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Chen, E.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Combemale, Y.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Craciun, V.

V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003).
[CrossRef]

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Datta, M.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Deal, B. E.

C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Dong, P.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Elsner, B.

M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Ghodssi, R.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Gomez, L.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Green, W. M. J.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Haus, H. A.

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Helms, C. R.

C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992).
[CrossRef]

Ho, P.-T.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Holmes, P. J.

P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Hsieh, I.-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Hunziker, W.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006).
[CrossRef] [PubMed]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kanakaraju, S.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006).
[CrossRef] [PubMed]

Kelly, D. P.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Kim, C.-J.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Kogelnik, H.

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lai, Q.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998).
[CrossRef]

Lärmer, F.

M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).

Laskowski, E.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lean, J. J.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Lee, C.-S.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Lee, J.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Lee, M.-C. M.

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
[CrossRef] [PubMed]

Lee, Y.-I.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Levy, D. S.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Li, D.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Li, M.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Lira, H. L. R.

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Manipatruni, S.

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

Martinez, J.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Mathieu, X.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Melchior, H.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Ng, H.-Y.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Offenberg, M.

M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).

Ollier, E.

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
[CrossRef]

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Ostrowsky, D.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Pafchek, R.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Panepucci, R. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Papuchon, M.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Park, K.-H.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Pathak, K.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Pernice, W.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006).
[CrossRef] [PubMed]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Pruessner, M. W.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

Reiber, L.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Richards, G.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Roy, A.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmidt, R.

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

Sejourne, B.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sherwood-Droz, N.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

Snell, J. E.

P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Spahn, O. B.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Stulz, L. W.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Sullivan, C. T.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

Tang, H.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Taylor, H. F.

H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Tigges, C. P.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Wang, H.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Wang, M. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Wang, X.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

Werner, M.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Wong-Foy, A.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

Wu, M. C.

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
[CrossRef] [PubMed]

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yang, O. W. W.

V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003).
[CrossRef]

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Yariv, A.

A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

Yoo, H.-J.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Yoon, Y.-S.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Electrochemical Society Fall Meet

M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).

IEEE J. Quantum Electron.

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976).
[CrossRef]

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975).
[CrossRef]

A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002).
[CrossRef]

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006).
[CrossRef]

IEEE Sel. Top. Quantum Electron.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

J. Appl. Phys.

H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973).
[CrossRef]

J. Lightwave Technol.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004).
[CrossRef]

J. Microelectromech. Syst.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005).
[CrossRef]

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997).
[CrossRef]

J. Vac. Sci. Technol.

C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992).
[CrossRef]

Microelectron. Reliab.

P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Nature

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Eng.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008).
[CrossRef]

Opt. Express

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006).
[CrossRef] [PubMed]

Opt. Lett.

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006).
[CrossRef] [PubMed]

M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006).
[CrossRef] [PubMed]

Proc. SPIE

V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003).
[CrossRef]

Other

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z – 68720Z–12 (2008).

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” in Proc. of Conference on Lasers and Electro-Optics, postdeadline paper CPDA2 (2007).

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Proc. of Optical Fiber Communication Conference, paper OTuF4 (2008).

M. A. Popović, H. A. Haus, and M. R. Watts, “General approach to hitless switching and FSR extension for resonators in integrated photonic circuits,” in Proc. of Optical Fiber Communication Conference, paper OWI66 (2006).

C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, John Wiley and Sons, Inc., New York, NY, USA, 1999.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips”, Proc. IEEE Special Issue on Silicon Photonics 97, 1166 – 1185 (2009).

R. E. Scotti, C. Madsen, C. H. Henry, G. Lenz, Y. P. Li, H. Presby, and A. White, “A hitless reconfigurable add-drop multiplexer for WDM networks utilizing planar waveguides, thermo-optic switches and uv-induced gratings,” in Proc. of Optical Fiber Communication Conference, 142 – 143 (1998).

H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall, 1984).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A challenging problem in current WDM networks. The flow of signals through a reconfigurable optical add-drop multiplexer (OADM) before, during and after reconfiguration is shown schematically. The different wavelength signals are depicted by different colored arrows. Stage 1 depicts the situation before any tuning of the OADM has taken place. The desired wavelength signal λ1 is dropped out and re-routed. Now, if it is desired to drop λ3 instead of λ1 , reconfiguration of the OADM takes place. During this finite time, the OADM is tuned through all wavelength channels in between λ1 and λ3 and undesired wavelength signals get re-routed. As an example, in Stage 2 at some time step during reconfiguration, λ2 (where λ1 < λ2 < λ3 ) although not desired, gets re-routed to a different channel.

Fig. 2
Fig. 2

The hitless bypass switch - a possible solution to WDM reconfiguration. The hitless bypass switch schematically described here attempts to provide a possible solution to the problem described in Fig. 1. Similar to Fig. 1, the flow of signals through a reconfigurable optical add-drop multiplexer (OADM) before, during and after reconfiguration is shown schematically. The different wavelength signals are once again depicted by different colored arrows. Stage 1 depicts the situation before any tuning of the OADM has taken place. The desired wavelength signal λ1 is dropped out and re-routed. Now as described in Fig. 1, if it is desired to drop λ3 instead of λ1 , reconfiguration of the OADM takes place. During this finite time, the OADM is tuned through all wavelength channels in between λ1 and λ3 . To prevent undesired wavelength signal loss, during the reconfiguration of the OADM, the hitless bypass switch provides a path where all the signals are temporarily transferred, thus completely bypassing it. This is shown in Stage 2. In Stage 3, after reconfiguration of the OADM is complete, the hitless bypass switch allows all wavelength signals to remain in the original channel and the desired wavelength λ3 gets re-routed.

Fig. 3
Fig. 3

Practical implementation of the hitless bypass switch. Schematic of a practical implementation of the hitless bypass switch using nanomechanical proximity perturbation based Δβ directional coupler switches is shown. Three main functional characteristics needed in this design are depicted: (1) cascading of two perturbed directional couplers in a Mach-Zehnder configuration, (2) large-amplitude perturbation of the directional couplers, and (3) inclusion of a ϕ-phase shift in one of the interferometer arms.

Fig. 4
Fig. 4

Schematic of signal propagation through the hitless bypass switch. a, for limiting condition of completed detuned state. b, for limiting condition of completely unperturbed state. c, for the 3-dB transition state. Notice in the 3-dB transition state, the power in the top arm is π-phase shifted, leading to destructive interference at the exit of the perturbed directional coupler. This maintains power in a5 throughout the transition.

Fig. 5
Fig. 5

Closed formed solution using coupled mode theory. a, Power in ports a3 and a4 for different detunings. When δ/κ = 3, all power from a4 gets transferred to a3 and complete detuned case is achieved. Note that for all values of the detuning parameter, the transmission in the hitless port is always 100% irrespective of the states of the directional coupler. (b, c, d), Sensitivity analysis of the two-cascade directional coupler design due to variations in π-phase shift (b), asymmetric perturbation (c) and coupling coefficients (d). Variations are investigated for a design threshold loss of 0.5 dB.

Fig. 6
Fig. 6

Numerical calculation of detuning parameter (δ/κ) for a high index contrast system. a, 3D FDTD method was used to find the coupling length for various separations between the two arms of the directional coupler. Here coupling length refers to the length required for complete coupling of light from one port of the directional coupler to the other. For a particular separation, the length is found and then κ is calculated. The inset gives the geometry and dimensions of the directional coupler used in the simulation. Inset also gives the 3D FDTD calculation showing the transfer of power from one port to the other looking from the top of the directional coupler. b, The detuning parameter (δ/κ) is plotted against the proximity distance. The figure shows that the required detuning parameter value (δ/κ = 3) can easily be achieved using the proximity perturbation method. Inset shows the geometry and dimension of the device that was studied.

Fig. 7
Fig. 7

3D numerical simulations of the influence of the perturbing dielectric on the high index contrast directional coupler system. a, Cross-section view of the directional coupler system showing the E-field distribution for different perturbing distances. As the perturbing distance is increased from panel (1) to panel (3), the mode shifts from the launch arm to the other arm of the directional coupler representing the unperturbed state of operation of the switch. b, Top: FDTD results showing unperturbed cross state. Bottom: FDTD results showing completely detuned state, with the power remaining in the source waveguide at the output plane.

Fig. 8
Fig. 8

Fabrication results of the hitless bypass switch. a, Optical microscope image of the hitless bypass switch with the cascaded nanomechanical proximity perturbation based directional coupler Δβ switches and a ring resonator coupled to one of the arms of the Mach Zehnder interferometer. Scale bar: 100 μm. Inset shows the cross-section profile of a waveguide (not same device) with vertical sidewalls and small sidewall roughness. b, Close-up SEM image of the perturbing dielectric and the waveguides. Perturbing distances of ~90 to 100 nm was achieved for some of the devices. c, SEM image of the comb-drive actuators. The perturbing dielectric is connected to the comb-drives through thin beams. d, Optical microscope image of the mask created from photoresist. The clear area is directly exposed to the vapor HF and the oxide underneath that gets taken away releasing the comb-drives and the directional coupler. e, SEM image of a Δβ switch after vapor HF and oxygen plasma to remove the photoresist layer.

Fig. 9
Fig. 9

Experimental setup for testing the performance of the hitless bypass switch. a, Schematic of the experimental setup. Inset shows a close up image of the chip under test together with the input and output tapered lensed fibers and two electrical probes. To measure the hitless bypass switch four probes was used. b, Zoomed in top view photograph of the chip without the probes. c, Modified setup to collect the output light using an objective lens instead of the tapered lensed fiber. Inset shows the output IR image seen from the cross-section of the waveguide ends. It shows that the output light from one of the arms of the bypass switch is much stronger than the output from the other arm.

Fig. 10
Fig. 10

Measurement results on the hitless bypass switch. a, Light-path in the switch for the perturbed (top figure) and unperturbed cases (bottom figure). Note that, in both cases, light always emerges out of port B and no light comes out of port C. The perturbed case is chosen such that there is light-path in both arms of the Mach-Zehnder to specifically illustrate the hitless switch operation. b, Top-view infrared image of the hitless bypass switch in both example states. c, Transmission spectrum (linear scale) from the drop port of the ring resonator in the perturbed and unperturbed cases. With the perturbed state (0V bias), light on-resonance with the microring resonator on the top interferometer arm is filtered into the drop port, with the resulting spectral resonances. At 40V, the unperturbed condition is achieved and almost all light goes through the bottom portion of the switch and negligible amount of light gets dropped through the ring resonator. 31 dB of contrast is achieved between the perturbed and unperturbed states. d, Transmission measurements through port B and C of the hitless bypass switch for the perturbed and unperturbed cases. An averaged extinction ratio of 17.3-dB and 11.8-dB is achieved for the unperturbed and perturbed cases respectively, across the wavelength range demonstrated.

Tables (1)

Tables Icon

Table 1 Resulting signal intensities for various states.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 11 = r r ' e j ( ϕ + ϕ ' + Δ θ / 2 ) t t ' e j Δ θ / 2
T 21 = j ( t ' r e j ( ϕ + Δ θ / 2 ) t r ' e j ( ϕ ' + Δ θ / 2 ) )

Metrics