Abstract

We developed a versatile numerical technique to compute the three-dimensional charge distribution inside plasmonic nanoparticles. This method can be easily applied to investigate the charge distribution inside arbitrarily complex plasmonic nanostructures and to identify the nature of the multipolar plasmon modes involved at plasmonic resonances. Its ability to unravel the physical origin of plasmonic spectral features is demonstrated in the case of a single gold nanotriangle and of a gold nano-antenna. Finally, we show how the volume charge distribution can be used to define and compute the first terms of the multipolar expansion.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995).
  2. A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
    [CrossRef]
  3. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
    [CrossRef] [PubMed]
  4. K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys.,  123, 114713 (2005)
    [CrossRef]
  5. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
    [CrossRef]
  6. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
    [CrossRef] [PubMed]
  7. N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
    [CrossRef] [PubMed]
  8. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
    [CrossRef]
  9. J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
    [CrossRef]
  10. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655 (2001).
    [CrossRef] [PubMed]
  11. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
    [CrossRef]
  12. M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
    [CrossRef] [PubMed]
  13. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
    [CrossRef] [PubMed]
  14. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
    [CrossRef] [PubMed]
  15. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
    [CrossRef] [PubMed]
  16. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
    [CrossRef] [PubMed]
  17. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
    [CrossRef] [PubMed]
  18. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732 (1975).
    [CrossRef]
  19. F. J. Garcia de Abajo, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  20. C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883 (2005).
    [CrossRef]
  21. A. A. Lazarides and G. C. Schatz, “DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties,” J. Phys. Chem. B,  104, 460 (2000)
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  23. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
    [CrossRef] [PubMed]
  24. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
    [CrossRef]
  25. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
    [CrossRef]
  26. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
    [CrossRef]
  27. M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
    [CrossRef] [PubMed]
  28. A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys. 12, 107 (1967).
    [CrossRef]
  29. C. Girard, “Multipolar propagators near a corrugated surface: Implication for local probe microscopy,” Phys. Rev. B 45, 1800 (1992).
    [CrossRef]

2009 (3)

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

2006 (3)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

2005 (4)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883 (2005).
[CrossRef]

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys.,  123, 114713 (2005)
[CrossRef]

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

2002 (1)

F. J. Garcia de Abajo, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

2001 (2)

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655 (2001).
[CrossRef] [PubMed]

2000 (3)

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

A. A. Lazarides and G. C. Schatz, “DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties,” J. Phys. Chem. B,  104, 460 (2000)
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
[CrossRef]

1999 (1)

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
[CrossRef]

1992 (1)

C. Girard, “Multipolar propagators near a corrugated surface: Implication for local probe microscopy,” Phys. Rev. B 45, 1800 (1992).
[CrossRef]

1975 (1)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1967 (1)

A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys. 12, 107 (1967).
[CrossRef]

Aubard, J.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

Brun, M.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

Buckingham, A. D.

A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys. 12, 107 (1967).
[CrossRef]

Cao, Y.

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Colliex, C.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

Félidj, N.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

Fuchs, R.

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732 (1975).
[CrossRef]

Galler, N.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

F. J. Garcia de Abajo, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

Girard, C.

C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883 (2005).
[CrossRef]

C. Girard, “Multipolar propagators near a corrugated surface: Implication for local probe microscopy,” Phys. Rev. B 45, 1800 (1992).
[CrossRef]

Grand, J.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

Gray, S. K.

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

Hafner, J. H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
[CrossRef]

Hale, G. D.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
[CrossRef]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

Henrard, L.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Hohenau, A.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

Huant, S.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

Jackson, J. B.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
[CrossRef]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Jones, A. C.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kociak, M.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995).

Krenn, J. R.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

Lamprecht, B.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Laurent, G.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

Lazarides, A. A.

A. A. Lazarides and G. C. Schatz, “DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties,” J. Phys. Chem. B,  104, 460 (2000)
[CrossRef]

Lee, T.

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

Leitner, A.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

Lévi, G.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

Li, Z.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Liu, M.

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

Liz-Marazán, L. M.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Maier, S. A.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
[CrossRef]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

Millstone, J. E.

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Nordlander, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
[CrossRef]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Park, S.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Payne, E. K.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

Pelton, M.

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

Qin, L.

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

Rang, M.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

Raschke, M. B.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys.,  123, 114713 (2005)
[CrossRef]

Rechberger, W.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys.,  123, 114713 (2005)
[CrossRef]

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

A. A. Lazarides and G. C. Schatz, “DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties,” J. Phys. Chem. B,  104, 460 (2000)
[CrossRef]

Schider, G.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
[CrossRef]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

Shuford, K. L.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys.,  123, 114713 (2005)
[CrossRef]

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
[CrossRef]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Stephan, O.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Taverna, D.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Tencé, M.

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995).

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Wiley, B. J.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

Zhao, L. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Zheng, J. G.

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities : implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys. 12, 107 (1967).
[CrossRef]

Appl. Phys. Lett. (2)

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light Scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063 (1999).
[CrossRef]

J. Chem. Phys. (2)

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys.,  123, 114713 (2005)
[CrossRef]

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (4)

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150 (2006).
[CrossRef] [PubMed]

A. A. Lazarides and G. C. Schatz, “DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties,” J. Phys. Chem. B,  104, 460 (2000)
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles : the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics : the importance of radiative coupling in two dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337 (2003).
[CrossRef]

JACS (1)

J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” JACS 127, 5312 (2005).
[CrossRef]

Micron (1)

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near field imaging and optical addressing in nanoscience,” Micron 38, 427 (2007).
[CrossRef]

Nano Lett. (4)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357 (2008).
[CrossRef] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171 (2008).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Nat. Phys. (1)

J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marazán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348 (2007).
[CrossRef]

New J. Phys. (1)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 27.1 (2000).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (4)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732 (1975).
[CrossRef]

F. J. Garcia de Abajo, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

C. Girard, “Multipolar propagators near a corrugated surface: Implication for local probe microscopy,” Phys. Rev. B 45, 1800 (1992).
[CrossRef]

Phys. Rev. Lett. (2)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

M. Liu, T. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

PNAS (1)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breabing in individual plasmonic nanoparticles,” PNAS 103, 10856 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68, 1883 (2005).
[CrossRef]

Science (1)

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901 (2001).
[CrossRef] [PubMed]

Other (1)

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995).

Supplementary Material (2)

» Media 1: AVI (1051 KB)     
» Media 2: AVI (1734 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Color online) a) Perspective view of the system. The particle is a 15 nm thick gold nanoprism the section of which is an equilateral triangle of side 110 nm. b) Far-field extinction spectrum computed when the system is illuminated in normal incidence.

Fig. 2.
Fig. 2.

(Color online) Normalized near-field optical intensity maps computed in a plane 15 nm above the nanoprism (same size as figure (1)).

Fig. 3.
Fig. 3.

(Media 1)(Color online) (Film online) Three dimensional representation of the induced charge density expressed in fC/nm3 inside the nanoprism depicted in figure (1). The incident laser power density is 105 W/cm2. Red and blue colors are respectively associated with positive and negative charge accumulations: (a) Map of the surface charge computed for the largest peak wavelength λ = 840 nm; (b) Map of the surface charge computed for the second peak wavelength λ = 600 nm; (c) A cross-section of the volume charge density performed when cutting the nanoprism along the white line of (b).

Fig. 4.
Fig. 4.

(Media 2)(Color online) (Film online) a) Extinction cross-section of a gold nano- antenna composed of two equilateral triangles (100×100×20 nm) in air, deposited on a glass substrate (= 2.25). b) Normalized near-field intensity map computed in a plane 15 nm above the bow-tie gold nano-antenna. c) and d) Three dimensional representations of the induced charge density expressed in fC/nm3 inside a bow-tie gold nano-antenna for an incident laser power density of 105 W/cm2.

Fig. 5.
Fig. 5.

(Color online) (a) Spectral variations of dipole (red line) and quadrupole (blue line) moments induced inside the nanoprism considered in figure (1). (b) Corresponding phase shifts variation versus the incident wavelength.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Δ E r ω 0 k 2 + E r ω 0 = - 4 π [ k 0 2 + 1 ε r ω 0 ] · P r ω 0 ,
E r ω 0 = E 0 r ω 0 + V S 0 r r ' ω 0 · P r ' ω 0 d r ' ,
P r ' ω 0 = χ r ' ω 0 · E r ' ω 0
χ r ω 0 = ε m r ω 0 ε env 4 π .
C ext = 4 πk E 0 2 i = 1 N Im { E 0 * r i ω 0 . P r i ω 0 } .
ρ r ω 0 = · P r ω 0 .
qv r ω 0 = V ρ r ω 0 d r = V · P r ω 0 d r
= S P r ω 0 · n dr ,
ρ r i ω 0 = · P r i ω 0 = 3 N a 2 j = 1 N P r i ω 0 · ( r j r i )
E R ω 0 = E 0 R ω 0 + i = 1 N S 0 R r i ω 0 · χ r i ω 0 · E r i ω 0
I ( R ) = E R ω 2 / E o R ω 2 .
ρ r ω 0 = n ( 1 ) n ( 2 n 1 ) ! ! M ( n ) ( ω 0 ) [ n ] ( n ) δ ( r r 0 ) ,
M ( 1 ) ( ω 0 ) = ν ρ r ω 0 ( r r 0 ) d r
M ( 2 ) ( ω 0 ) = 1 2 ν ρ r ω 0 [ 3 ( r r 0 ) ( r r 0 ) r r 0 2 I ] d r .
M ( l ) ( t ) = ( 1 ) cos ( ω 0 t + Φ ( l ) ( ω 0 ) ) ,
( l ) ( ω 0 ) = ( Re [ M ( l ) ( ω 0 ) ] ) 2 + ( Im [ M ( l ) ( ω 0 ) ] ) 2 .
Φ ( l ) ( ω 0 ) = Arg [ M ( l ) ( ω 0 ) ] .

Metrics