Abstract

We demonstrate “depth of field multiplexing” by a high resolution spatial light modulator (SLM) in a Fourier plane in the imaging path of a standard microscope. This approach provides simultaneous imaging of different focal planes in a sample with only a single camera exposure. The phase mask on the SLM corresponds to a set of superposed multi-focal off-axis Fresnel lenses, which sharply image different focal planes of the object to non-overlapping adjacent sections of the camera chip. Depth of field multiplexing allows to record motion in a three dimensional sample volume in real-time, which is exemplarily demonstrated for cytoplasmic streaming in plant cells and rapidly swimming protozoa.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
    [CrossRef]
  2. S. Hasinoff and K. Kutulakos, “Light-Efficient Photography,” Computer Vision ECCV 2008, 45–59 (2008). URL http://dx.doi.org/10.1007/978-3-540-88693-8_4.
  3. S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Opt. Express 14, 8269–8277 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8269.
    [CrossRef] [PubMed]
  4. C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
    [CrossRef]
  5. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
    [CrossRef]
  6. P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009). URL http://ol.osa.org/abstract.cfm?URI=ol-34-18-2787.
    [CrossRef] [PubMed]
  7. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
    [CrossRef]
  8. R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24, 735–744 (2005). URL http://dx.doi.org/10.1145/1073204.1073256.
    [CrossRef]
  9. E. R. Dowski and W. T. Cathey, “Extended Depth Of Field Through Wave-Front Coding,” Appl. Opt. 34, 1859–1866 (1995).
    [CrossRef] [PubMed]
  10. W. T. Cathey and E. R. Dowski, “New Paradigm for Imaging Systems,” Appl. Opt. 41, 6080–6092 (2002). URL http://ao.osa.org/abstract.cfm?URI=ao-41-29-6080.
    [CrossRef] [PubMed]
  11. M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
    [CrossRef]
  12. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express 16, 19821–19829 (2008).
    [CrossRef] [PubMed]
  13. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
    [CrossRef]
  14. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8263.
    [CrossRef] [PubMed]
  15. J. A. Davis and D. M. Cottrell, “Random Mask Encoding Of Multiplexed Phase-Only And Binary Phase-Only Filters,” Opt. Lett. 19, 496–498 (1994).
    [CrossRef] [PubMed]
  16. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-4-1913.
    [CrossRef] [PubMed]
  17. P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183, 29–36 (2000).
    [CrossRef]
  18. S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

2009 (2)

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009). URL http://ol.osa.org/abstract.cfm?URI=ol-34-18-2787.
[CrossRef] [PubMed]

2008 (4)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express 16, 19821–19829 (2008).
[CrossRef] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[CrossRef]

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
[CrossRef]

S. Hasinoff and K. Kutulakos, “Light-Efficient Photography,” Computer Vision ECCV 2008, 45–59 (2008). URL http://dx.doi.org/10.1007/978-3-540-88693-8_4.

2007 (2)

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-4-1913.
[CrossRef] [PubMed]

2006 (3)

2005 (1)

R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24, 735–744 (2005). URL http://dx.doi.org/10.1145/1073204.1073256.
[CrossRef]

2002 (1)

2000 (1)

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183, 29–36 (2000).
[CrossRef]

1999 (1)

1995 (1)

1994 (1)

Badizadegan, K.

Bally, G. von

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express 16, 19821–19829 (2008).
[CrossRef] [PubMed]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

Bernhardt, I.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Blanchard, P. M.

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183, 29–36 (2000).
[CrossRef]

P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
[CrossRef]

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[CrossRef]

Campbell, H. I.

Campos, J.

C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
[CrossRef]

Cathey, W. T.

Chen, B.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

Cottrell, D. M.

Dasari, R. R.

Davis, J. A.

Dirksen, D.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Djidel, S.

Dowski, E. R.

Escalera, J. C.

C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
[CrossRef]

Feld, M. S.

Ferraro, P.

Finizio, A.

Fürhapter, S.

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

Gansel, J. K.

Georgiev, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Gimeno, R.

C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
[CrossRef]

Greenaway, A. H.

Hasinoff, S.

S. Hasinoff and K. Kutulakos, “Light-Efficient Photography,” Computer Vision ECCV 2008, 45–59 (2008). URL http://dx.doi.org/10.1007/978-3-540-88693-8_4.

Hughes, J. F.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

Ianni, F.

Iemmi, C.

C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
[CrossRef]

Ivanova, L.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express 16, 19821–19829 (2008).
[CrossRef] [PubMed]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

Kemper, B.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Ketelhut, S.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Kik, P. G.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
[CrossRef]

Kutulakos, K.

S. Hasinoff and K. Kutulakos, “Light-Efficient Photography,” Computer Vision ECCV 2008, 45–59 (2008). URL http://dx.doi.org/10.1007/978-3-540-88693-8_4.

Langehanenberg, P.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Leonardo, R. D.

Lopez-Coronado, O.

C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
[CrossRef]

Matusik, W.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express 16, 19821–19829 (2008).
[CrossRef] [PubMed]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

McGuire, M.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

Memmolo, P.

Nayar, S. K.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

Ng, R.

R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24, 735–744 (2005). URL http://dx.doi.org/10.1145/1073204.1073256.
[CrossRef]

Park, Y.

Paturzo, M.

Pfister, H.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

Popescu, G.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express 16, 19821–19829 (2008).
[CrossRef] [PubMed]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

Riza, N. A.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
[CrossRef]

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[CrossRef]

Ruocco, G.

Sheikh, M.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
[CrossRef]

Vollmer, A.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Webb-Wood, G.

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
[CrossRef]

Yzuel, M. J.

C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase by multiplexing programmable diffractive lenses,” Opt. Express 14, 10,207–10,219 (2006).
[CrossRef]

ACM Trans. Graph. (1)

R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24, 735–744 (2005). URL http://dx.doi.org/10.1145/1073204.1073256.
[CrossRef]

Appl. Opt. (3)

Computer Vision ECCV (1)

S. Hasinoff and K. Kutulakos, “Light-Efficient Photography,” Computer Vision ECCV 2008, 45–59 (2008). URL http://dx.doi.org/10.1007/978-3-540-88693-8_4.

IEEE Comput. Graphics Appl. (1)

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical Splitting Trees for High-Precision Monocular Imaging,” IEEE Comput. Graphics Appl. 27, 32–42 (2007).
[CrossRef]

J. Biomed. Opt. (1)

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy.” J. Biomed. Opt. 14, 018 (2009).
[CrossRef]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[CrossRef]

Opt. Commun. (1)

P. M. Blanchard and A. H. Greenaway, “Broadband simultaneous multiplane imaging,” Opt. Commun. 183, 29–36 (2000).
[CrossRef]

Opt. Eng. (1)

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, “Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (1)

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, Spiral phase microscopy, Imag. Electron Physics146 ed. (Pergamon Press, 2007).

Supplementary Material (2)

» Media 1: MOV (3923 KB)     
» Media 2: MOV (3881 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

In “depth of field multiplexing” the camera chip is divided into panel sections that record different SLM-steered focal settings simultaneously. Here the sample consists of 4.5 μm polystyrene beads in agarose gel, imaged in steps of 1.2 μm. On the left we see the raw data, a single exposure of the camera. In this image (but not in the following examples with phase masks optimized to avoid this) the central panel containing the undiffracted (zeroth order) light is overexposed and thus has been replaced by a homogeneous rectangle. The data can also be arranged as a z-stack (middle), which can also be merged for a quasi-3D appearance of the image (right).

Fig. 2.
Fig. 2.

Multiplexed images of swimming Euglena protozoans: One recorded frame from a slow motion video movie (Media 1) with 8 diffracted sub-images arranged around the central undiffracted (zeroth order) beam. The corresponding axial shift in the sample volume is indicated in the figure. The scale bar corresponds to 10 μm.

Fig. 3.
Fig. 3.

Experimental setup for depth of field multiplexing: The sample volume is illuminated with a laser beam guided through a beam expanding telescope to a rotating diffuser which reduces speckle by time averaging. The diameter of the illumination spot (a) at the diffuser is adjusted to fit the aperture of the condenser (b). Behind the objective a relay system consisting of two lenses (f = 160mm and f = 150 mm) projects the Fourier transform of the image wave at the surface of a spatial light modulator (SLM). The phase pattern is programmed to split the incoming wave into multiple output directions with different beam divergences. These different divergences lead to different corresponding effective focal lengths of the respective imaging paths. As a result the camera records a set of multiple images in adjacent sectors of the camera plane, each displaying another sharp axial section of the sample volume.

Fig. 4.
Fig. 4.

Performance of beam multiplexing phase masks. A: Experimentally measured diffraction efficiencies of phase masks produced by the random mask encoding and by the wGS methods, respectively, as a function of the number of different output beams. B: diffraction efficiency, contrast and magnification factor of a wGS phase mask as a function of the refractive power of the programmed lens term.

Fig. 5.
Fig. 5.

Multiplexed images of cytoplasmic streaming in the stamen hair cells of a tradescantia flower. The figure shows a single frame (unprocessed data) obtained with SLM-based depth of field multiplexing. The image consists of 8 sub-images arranged around the central zeroth order image, which sharply display different focal planes within the sample with a relative axial displacement of 2.4 μm. The three pairs of arrows (red, orange, yellow) indicate transitions where the streaming path can be seen to change from one slice to the neighboring one. The corresponding movie (Media 2) is shown in real time, with a recording frame rate of 15 Hz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ z = f Obj 2 / f SLM .
φ ( x , y ) = mod 2 π ( π λ f SLM ( x 2 + y 2 ) ) ,
φ < π p .
2 r max π λ f SLM , min < π p or f SLM , min > 2 r max λ p .

Metrics