Abstract

We experimentally demonstrate a tunable delay element that is inherently insensitive to free-carrier loss and achieves up to 300ps of delay. It is capable of arbitrarily storing and releasing a pulse of light through dynamic tuning of a system of microcavities. The inherent storage time is more than 32 times the duration of the stored pulse.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
    [CrossRef] [PubMed]
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
    [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  5. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
    [CrossRef]
  6. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef]
  7. F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
    [CrossRef]
  8. S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007).
    [CrossRef] [PubMed]
  9. D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
    [CrossRef]
  10. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
    [CrossRef] [PubMed]
  11. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [CrossRef]
  12. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [CrossRef] [PubMed]
  13. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
    [CrossRef] [PubMed]
  14. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  15. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  16. A. W. Elshaari and S. F. Preble, “Active Optical Isolator Using Adiabatic Wavelength Conversion in Microcavities,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThU4.
  17. C. R. Otey, M. L. Povinelli, and S. Fan, “Completely Capturing Light Pulses in a Few Dynamically Tuned Microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
    [CrossRef]
  18. M. F. Yanik and S. Fan, “Slow light: dynamic photon storage,” Nat. Phys. 3(6), 372–374 (2007).
    [CrossRef]
  19. S. F. Preble, Q. Xu, and M. Lipson, “Changing the Colour of Light in a Silicon Resonator,” Nat. Photonics 1(5), 293–296 (2007).
    [CrossRef]
  20. A. W. Elshaari and S. F. Preble, “Nanosecond Tunable Optical Delay Using Silicon Cavities,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FML3.
  21. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  22. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  23. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
    [CrossRef] [PubMed]
  24. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
    [CrossRef] [PubMed]

2009 (2)

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

2008 (4)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely Capturing Light Pulses in a Few Dynamically Tuned Microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

2007 (8)

S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007).
[CrossRef] [PubMed]

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

M. F. Yanik and S. Fan, “Slow light: dynamic photon storage,” Nat. Phys. 3(6), 372–374 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the Colour of Light in a Silicon Resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

2005 (1)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

1999 (2)

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1998 (1)

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Asano, T.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bergman, K.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Biberman, A.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Cardenas, J.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Carusotto, I.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Chen, L.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Cirac, J.-I.

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Fan, S.

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely Capturing Light Pulses in a Few Dynamically Tuned Microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

M. F. Yanik and S. Fan, “Slow light: dynamic photon storage,” Nat. Phys. 3(6), 372–374 (2007).
[CrossRef]

S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Fiurásek, J.

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

Gaburro, Z.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Ghulinyan, M.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Gomez-Iglesias, A.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

Hagino, H.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Julsgaard, B.

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Krauss, T.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Lee, B. G.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Lee, R. K.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

Lipson, M.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the Colour of Light in a Silicon Resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Manipatruni, S.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Michaeli, A.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Modinos, A.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[CrossRef]

Noda, S.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

O’Brien, D.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

O'Boyle, M.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Otey, C. R.

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely Capturing Light Pulses in a Few Dynamically Tuned Microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Pavesi, L.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Poitras, C. B.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Polzik, E. S.

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

Povinelli, M. L.

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely Capturing Light Pulses in a Few Dynamically Tuned Microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007).
[CrossRef] [PubMed]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the Colour of Light in a Silicon Resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Preston, K.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Recati, A.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Riboli, F.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Robinson, J. T.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Salib, M.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

Sandhu, S.

S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007).
[CrossRef] [PubMed]

Scherer, A.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

Schmidt, B.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Settle, M. D.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

Shakya, J.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Sherson, J.

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

Sherwood-Droz, N.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Song, B. S.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Stefanou, N.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[CrossRef]

Takahashi, Y.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Tanaka, Y.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
[CrossRef] [PubMed]

Upham, J.

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Wang, H.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Xia, F.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the Colour of Light in a Silicon Resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Xu, Y.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. Fan, “Slow light: dynamic photon storage,” Nat. Phys. 3(6), 372–374 (2007).
[CrossRef]

Yariv, A.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

J. Lightwave Technol. (1)

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely Capturing Light Pulses in a Few Dynamically Tuned Microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

Nat. Photonics (1)

S. F. Preble, Q. Xu, and M. Lipson, “Changing the Colour of Light in a Silicon Resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Nat. Phys. (2)

M. F. Yanik and S. Fan, “Slow light: dynamic photon storage,” Nat. Phys. 3(6), 372–374 (2007).
[CrossRef]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

B. Julsgaard, J. Sherson, J.-I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007).
[CrossRef] [PubMed]

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14(16), 7270–7278 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32(22), 3333–3335 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[CrossRef]

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Other (2)

A. W. Elshaari and S. F. Preble, “Active Optical Isolator Using Adiabatic Wavelength Conversion in Microcavities,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThU4.

A. W. Elshaari and S. F. Preble, “Nanosecond Tunable Optical Delay Using Silicon Cavities,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FML3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic the system and its operation principle, (Step 1) shows the acceptance state of the system. Bits are stored as shown in (Steps 2 and 3) then released in (Steps 4 and 5)

Fig. 2
Fig. 2

(a) Numerical simulations of storing a 20ps pulse in the proposed system with an injected carrier density of 5E18cm−3. (b) Same data is stored in the EIT device proposed in [11] with an injected carrier density of 5E17cm−3.

Fig. 3
Fig. 3

Numerical simulations of the stored power after 100picoseconds in the storage unit with different carrier densities. Our proposed scheme is in blue while a comparable EIT system in red.

Fig. 4
Fig. 4

Scanning electron microscope image of the fabricated device with three ring resonators with a schematic of the capture and release process of the three ring system similar to Fig. 1 .

Fig. 5
Fig. 5

(a) Shows the transmission through the middle waveguide without heating (Open EIT), while (b) shows the transmission with heating of the blue storage ring (Closed EIT), finally (c) depicts the case when all the rings are approximately in resonance through heating of the input ring and the blue storage ring.

Fig. 6
Fig. 6

Experimental setup used .The stored pulses are generated in an OPO crystal from 830nm Ti-Sapphire laser, while SHG is used to generate 415nm storage and release signals.

Fig. 7
Fig. 7

Different delays are measured through changing the time between the store and the release top pumping pulses.

Fig. 8
Fig. 8

Different delay measurements and data fit, the system has an intrinsic decay time of ~160ps.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d a d t = ( j ω o 1 τ i n t 1 τ t h r o u g h 1 τ d r o p ) a + j κ 1 E I n t h r o u g h + j κ 2 E I n d r o p
E O u t t h r o u g h = E I n t h r o u g h j κ 1 a
E O u t d r o p = E I n d r o p j κ 2 a
a ( l ) = a o e j Δ β l + 0.5 Δ α l
Δ β = 2 π λ Δ n n e f f = 2 π λ ( 8.8 × 10 22 Δ N + 8.5 × 10 18 Δ P 0.8 )
Δ α = 8.5 × 10 18 Δ N + 6.0 × 10 18 Δ P

Metrics