Abstract

A phase controlled beam combining via nonlinear optical conversion is proposed and demonstrated. This process involves the combining of the fields at the second harmonic frequency generated by non-collinear input fields. The arrangement of the excitation configuration allows the generated second-harmonic light waves to propagate collinearly, with phases coherently correlated. The manipulation of the conversion efficiency is then possible with the phase control of the input fields. The combined second-harmonic fields are shown to be conveniently and robustly variable from zero to a maximum value that greatly exceeds the second-harmonic field generated by a single laser beam. By using a self-adaptive control algorithm, it is possible to optimize the output without prior knowledge on each beamlet property. Either the second-harmonic output beam profile or the total second-harmonic output power can be optimized with the control algorithm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  2. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett. 25(6), 405–407 (2000).
    [Crossref]
  3. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
    [Crossref]
  4. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
    [Crossref]
  5. T. H. Loftus, A. M. Thomas, M. Norsen, J. Minelly, P. Jones, E. Honea, S. A. Shakir, S. Hendow, W. Culver, B. Nelson, and M. Fitelson, “Four-Channel, High Power, Passively Phase Locked Fiber Array,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WA4, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2008-WA4 .
  6. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, “Diffractive-optics-based beam combination of a phase-locked fiber laser array,” Opt. Lett. 33(4), 354–356 (2008).
    [Crossref] [PubMed]
  7. D. Engström, S. Hard, and P. Rudquist, “Beam steering by combining two binary phase modulated FLC SLMs,” Proc. SPIE 5181, 132–143 (2003).
    [Crossref]
  8. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29(5), 474–476 (2004).
    [Crossref] [PubMed]
  9. X. S. Xie, M. Li, J. Guo, B. Liang, Z. X. Wang, A. Sinitskii, Y. Xiang, and J. Y. Zhou, “Phase manipulated multi-beam holographic lithography for tunable optical lattices,” Opt. Express 15(11), 7032–7037 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-11-7032 .
    [Crossref] [PubMed]
  10. J. T. Li, Y. K. Liu, X. S. Xie, P. Q. Zhang, B. Liang, L. Yan, J. Y. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. C. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16(17), 12899–12904 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12899 .
    [Crossref] [PubMed]
  11. V. Krylov, A. Rebane, A. G. Kalintsev, H. Schwoerer, and U. P. Wild, “Second-harmonic generation of amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 20(2), 198–200 (1995).
    [Crossref] [PubMed]
  12. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994).
    [Crossref]
  13. N. Konforti, E. Marom, and S.-T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett. 13(3), 251–253 (1988).
    [Crossref] [PubMed]
  14. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22(23), 1793–1795 (1997).
    [Crossref]
  15. W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of statistical functions with simulated annealing,” J. Econom. 60(1-2), 65–99 (1994).
    [Crossref]

2008 (2)

2007 (3)

2005 (1)

T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2004 (1)

2003 (1)

D. Engström, S. Hard, and P. Rudquist, “Beam steering by combining two binary phase modulated FLC SLMs,” Proc. SPIE 5181, 132–143 (2003).
[Crossref]

2000 (1)

1997 (1)

1995 (1)

1994 (2)

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994).
[Crossref]

W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of statistical functions with simulated annealing,” J. Econom. 60(1-2), 65–99 (1994).
[Crossref]

1988 (1)

Augst, S. J.

Cheung, E. C.

Choi, H. K.

Cook, C. C.

Daneu, V.

DeLong, K. W.

Engström, D.

D. Engström, S. Hard, and P. Rudquist, “Beam steering by combining two binary phase modulated FLC SLMs,” Proc. SPIE 5181, 132–143 (2003).
[Crossref]

Fan, T. Y.

Ferrier, G. D.

W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of statistical functions with simulated annealing,” J. Econom. 60(1-2), 65–99 (1994).
[Crossref]

Goffe, W. L.

W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of statistical functions with simulated annealing,” J. Econom. 60(1-2), 65–99 (1994).
[Crossref]

Goodno, G. D.

Guo, J.

Hard, S.

D. Engström, S. Hard, and P. Rudquist, “Beam steering by combining two binary phase modulated FLC SLMs,” Proc. SPIE 5181, 132–143 (2003).
[Crossref]

Ho, J. G.

Hoffman, P. R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Honea, E. C.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Hunter, J.

Jacobs, D.

Kalintsev, A. G.

Konforti, N.

Krylov, V.

Kurizki, G.

Li, J. T.

Li, M.

Liang, B.

Liu, A.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Liu, Y. K.

Loftus, T. H.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Marom, E.

Meshulach, D.

Norsen, M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Ranka, J. K.

Rebane, A.

Rice, R. R.

Rogers, J.

W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of statistical functions with simulated annealing,” J. Econom. 60(1-2), 65–99 (1994).
[Crossref]

Rothenberg, J.

Royse, R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Rudquist, P.

D. Engström, S. Hard, and P. Rudquist, “Beam steering by combining two binary phase modulated FLC SLMs,” Proc. SPIE 5181, 132–143 (2003).
[Crossref]

Sanchez, A.

Schwoerer, H.

Silberberg, Y.

Sinitskii, A.

Thielen, P.

Thomas, A. M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Trebino, R.

Turner, G. W.

Wang, Z. X.

Weber, M.

White, W. E.

Wickham, M.

Wild, U. P.

Wong, K. S.

Wu, S.-T.

Xiang, Y.

Xie, X. S.

Yan, L.

Yelin, D.

Zhang, P. Q.

Zhong, Y. C.

Zhou, J. Y.

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

J. Econom. (1)

W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of statistical functions with simulated annealing,” J. Econom. 60(1-2), 65–99 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (6)

Proc. SPIE (1)

D. Engström, S. Hard, and P. Rudquist, “Beam steering by combining two binary phase modulated FLC SLMs,” Proc. SPIE 5181, 132–143 (2003).
[Crossref]

Other (1)

T. H. Loftus, A. M. Thomas, M. Norsen, J. Minelly, P. Jones, E. Honea, S. A. Shakir, S. Hendow, W. Culver, B. Nelson, and M. Fitelson, “Four-Channel, High Power, Passively Phase Locked Fiber Array,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WA4, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2008-WA4 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup for phase controlled beam combining with nonlinear frequency conversion, (b) configuration of four beams for generating and combining two-SHG signals.

Fig. 2
Fig. 2

Intensity output of the combined SHG beam with the phase delay of one beam. (a) Experimentally observed result and (b) numerical simulation result.

Fig. 3
Fig. 3

Intensity pattern of the combined SHG output with four, (b) six and (c) twelve input beamlets. The corresponding masks are also shown at lower right corner in each figure.

Fig. 4
Fig. 4

Beam profile of (a) the clean SHG output, and (b) the maximum SHG-energy output for the optimized phases of 12 input beamlets.

Fig. 5
Fig. 5

The optimized beam profile of the combined beam for the second harmonic of the Ti:sapphire laser output.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E s h g χ ( 2 ω ) [ E ( t ) E ( t ) + E ( t ) E ( t τ ) ] I = E s h g × E s h g *

Metrics