Abstract

We analyze the resonance spectrum in silicon microring resonators taking into account the end-facet reflection from a coupled waveguide, which can provide a dense set of Fabry-Perot resonances. Based on the simple configuration of a microring coupled with a waveguide, the resulting asymmetric Fano-like non-Lorentzian resonance is obtained by scattering theory and experiment. Enhanced sensing performance with steeper slope to the resonance is theoretically predicted and experimentally demonstrated for a 10-μm racetrack silicon microring resonator. A high sensitivity of ~10−8 RIU in terms of the detection limit is obtained in a 30-dB signal-to-noise ratio (SNR) system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
    [Crossref]
  2. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  3. C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [Crossref]
  4. Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
    [Crossref]
  5. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [Crossref]
  6. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [Crossref] [PubMed]
  7. M. Hammer and E. van Groesen, “Total multimode reflection at facets of planar high-contrast optical waveguides,” J. Lightwave Technol. 20(8), 1549–1555 (2002).
    [Crossref]
  8. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008).
    [Crossref] [PubMed]
  9. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [Crossref]
  10. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microring with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [Crossref]
  11. V. M. N. Passaro and F. De Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 124–133 (2006).
    [Crossref]
  12. W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
    [Crossref] [PubMed]
  13. J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, and D. X. Xu, “Gradient-index antireflective subwavelength structures for planar waveguide facets,” Opt. Lett. 32(13), 1794–1796 (2007).
    [Crossref] [PubMed]
  14. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15(8), 4745–4752 (2007).
    [Crossref] [PubMed]
  15. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]

2008 (3)

2007 (3)

2006 (4)

V. M. N. Passaro and F. De Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 124–133 (2006).
[Crossref]

W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[Crossref]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

2003 (1)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microring with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

2002 (2)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

M. Hammer and E. van Groesen, “Total multimode reflection at facets of planar high-contrast optical waveguides,” J. Lightwave Technol. 20(8), 1549–1555 (2002).
[Crossref]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Baets, R.

Bartolozzi, I.

Beausoleil, R. G.

Bienstman, P.

Borselli, M.

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[Crossref]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microring with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Cheben, P.

Chen, L.

Chen, Y.

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

Chrystal, C.

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

De Leonardis, F.

V. M. N. Passaro and F. De Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 124–133 (2006).
[Crossref]

De Vos, K.

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fattal, D.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[Crossref]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microring with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Hammer, M.

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Huang, Y.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Janz, S.

Johnson, T. J.

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Lapointe, J.

Liang, W.

Lipson, M.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Michael, C. P.

Nitkowski, A.

Painter, O.

Passaro, V. M. N.

V. M. N. Passaro and F. De Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 124–133 (2006).
[Crossref]

Poon, J. K. S.

Post, E.

Schacht, E.

Schmid, J. H.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Vahala, K. J.

van Groesen, E.

Xia, Z.

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

Xu, D. X.

Xu, Q.

Yang, L.

Yariv, A.

Zhou, Z.

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

Appl. Phys. Lett. (2)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microring with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

V. M. N. Passaro and F. De Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 124–133 (2006).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (2)

Photon. Technol. Lett. (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MR resonator with end facet reflection

Fig. 2
Fig. 2

(a) SEM image of racetrack microring. (b) Simulation results showing the coupled MR-waveguide resonance for W = 0.032 nm for α = 0.13 π and α = 0.5 π , W = 0.02 nm for α = π . (c) Experimental results showing the coupled resonance for racetrack MRs, upper two curves with 10 μm and lower curve with 6 μm coupling length, and the length of the bus waveguide is about 10 mm.

Fig. 3
Fig. 3

The coupled resonance with different end-facet reflection coefficientsr, W = 0.032 nm.

Fig. 4
Fig. 4

(a) Resonances in a Si MR resonator. The dashed line represents the pure resonance, the solid line represents the combined resonance, and the circles represent the experimentally measured spectrum. (b) The end-facet reflection in ultra high Q microring resonator.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T r = [ 1 i W ω ω 0 i W ω ω 0 i W ω ω 0 1 + i W ω ω 0 ] ,
T = T F P [ e i φ 0 0 e i φ ] T r [ e i φ 0 0 e i φ ] T F P ,
T F P = 1 i 1 r 2 [ 1 r r 1 ] ,
r = n e f f 1 n e f f + 1 ,
δ n = δ I S ,

Metrics