Abstract

In order to improve the low displacement sensitivity in sensing the 2D deflection of a fiber probe used for measurement of micro cavities with high aspect ratio, a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera. The deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivities of 10,000 and 20,000 in two dimensions using a fiber stem of 44 μm in diameter, and the corresponding resolutions are better than 1 nm and 3 nm respectively.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional fiber probe based on micro focal-length collimation and a fiber Bragg grating for the measurement of micro parts

Jiwen Cui, Junying Li, Kunpeng Feng, and Jiubin Tan
Opt. Lett. 40(14) 3348-3351 (2015)

Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies

Kaushik Subramanian, Ilan Gabay, Onur Ferhanoğlu, Adam Shadfan, Michal Pawlowski, Ye Wang, Tomasz Tkaczyk, and Adela Ben-Yakar
Biomed. Opt. Express 7(11) 4639-4653 (2016)

Paraxial focal length measurement method with a simple apparatus

Zhangji Lu and Lilong Cai
Opt. Express 27(3) 2044-2055 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. X. Zhang and S. M. Yang, “A 3D probe for measuring small blind holes,” Ann CIRP 44(1), 461–464 (1995).
    [Crossref]
  2. S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
    [Crossref]
  3. G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact High-Accuracy CMM,” Annals of the CIRP 48(1), 417–420 (1999).
    [Crossref]
  4. R. Lu, “Design of a nanometer capacative probe,” Mechatronics design report, Eindhoven University, Stan Ackermans Institute(1999).
  5. W. P. van Vliet and P. H. J. Schellekens, “Accuracy limitations of fast mechanical probing,” Annals of the CIRP 45(1), 483–487 (1996).
    [Crossref]
  6. H. Haitjema, W. O. Pril, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” Ann CIRP 50(1), 365–368 (2001).
    [Crossref]
  7. T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Ann CIRP 42(1), 589–592 (1993).
    [Crossref]
  8. T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
    [Crossref]
  9. H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
    [Crossref]
  10. U. Brand, T. Kleine-Besten, and H. Schwenke, “Development of a special CMM for dimensional metrology on microsystem components,” In: Proceedings of the Annual Meeting of the ASPE, 542–546 (2000).
  11. Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
    [Crossref]
  12. T. Hashimoto, Y. Takaya, T. Miyoshi, and R. Nakajima, “Fundamental analysis on the novel 3-D probing technique for micro-parts using the optical fiber trapping,” In: Proceedings of the Annual Meeting of the ASPE, 83–86 (2003).
  13. B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” In: Proceedings of the ASPE Annual Meeting, 24–27 (2004).
  14. B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng. 30(2), 154–164 (2006).
    [Crossref]
  15. W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

2006 (1)

B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng. 30(2), 154–164 (2006).
[Crossref]

2004 (1)

W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

2001 (2)

H. Haitjema, W. O. Pril, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” Ann CIRP 50(1), 365–368 (2001).
[Crossref]

H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
[Crossref]

1999 (2)

Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
[Crossref]

G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact High-Accuracy CMM,” Annals of the CIRP 48(1), 417–420 (1999).
[Crossref]

1998 (1)

S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
[Crossref]

1997 (1)

T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
[Crossref]

1996 (1)

W. P. van Vliet and P. H. J. Schellekens, “Accuracy limitations of fast mechanical probing,” Annals of the CIRP 45(1), 483–487 (1996).
[Crossref]

1995 (1)

G. X. Zhang and S. M. Yang, “A 3D probe for measuring small blind holes,” Ann CIRP 44(1), 461–464 (1995).
[Crossref]

1993 (1)

T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Ann CIRP 42(1), 589–592 (1993).
[Crossref]

Bergaud, C.

T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
[Crossref]

Fujino, M.

T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
[Crossref]

T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Ann CIRP 42(1), 589–592 (1993).
[Crossref]

Fung, E. H. K.

S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
[Crossref]

Haitjema, H.

H. Haitjema, W. O. Pril, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” Ann CIRP 50(1), 365–368 (2001).
[Crossref]

Hamasaki, Y.

T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Ann CIRP 42(1), 589–592 (1993).
[Crossref]

Kaiser, M. J.

S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
[Crossref]

Kim, B. J.

T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
[Crossref]

Kunzmann, H.

H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
[Crossref]

Lewis, A. J.

G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact High-Accuracy CMM,” Annals of the CIRP 48(1), 417–420 (1999).
[Crossref]

Li, S.

S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
[Crossref]

Ma, H.

W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

Masuzawa, T.

T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
[Crossref]

T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Ann CIRP 42(1), 589–592 (1993).
[Crossref]

Miyoshi, T.

Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
[Crossref]

Muralikrishnan, B.

B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng. 30(2), 154–164 (2006).
[Crossref]

Oldfield, S.

G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact High-Accuracy CMM,” Annals of the CIRP 48(1), 417–420 (1999).
[Crossref]

Peggs, G. N.

G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact High-Accuracy CMM,” Annals of the CIRP 48(1), 417–420 (1999).
[Crossref]

Pril, W. O.

H. Haitjema, W. O. Pril, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” Ann CIRP 50(1), 365–368 (2001).
[Crossref]

Saito, K.

Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
[Crossref]

Schellekens, P. H. J.

H. Haitjema, W. O. Pril, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” Ann CIRP 50(1), 365–368 (2001).
[Crossref]

W. P. van Vliet and P. H. J. Schellekens, “Accuracy limitations of fast mechanical probing,” Annals of the CIRP 45(1), 483–487 (1996).
[Crossref]

Schwenke, H.

H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
[Crossref]

Stone, J. A.

B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng. 30(2), 154–164 (2006).
[Crossref]

Stoup, J. R.

B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng. 30(2), 154–164 (2006).
[Crossref]

Takahashi, S.

Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
[Crossref]

Takaya, Y.

Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
[Crossref]

Tan, J.

W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

van Vliet, W. P.

W. P. van Vliet and P. H. J. Schellekens, “Accuracy limitations of fast mechanical probing,” Annals of the CIRP 45(1), 483–487 (1996).
[Crossref]

Waldele, F.

H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
[Crossref]

Weiskirch, C.

H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
[Crossref]

Yang, S.

S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
[Crossref]

Yang, S. M.

G. X. Zhang and S. M. Yang, “A 3D probe for measuring small blind holes,” Ann CIRP 44(1), 461–464 (1995).
[Crossref]

Zhang, G. X.

G. X. Zhang and S. M. Yang, “A 3D probe for measuring small blind holes,” Ann CIRP 44(1), 461–464 (1995).
[Crossref]

Zhao, W.

W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

Zou, L.

W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

Acta Opt. Sin. (1)

W. Zhao, J. Tan, H. Ma, and L. Zou, “Laser collimation method based on the drift feedback control,” Acta Opt. Sin. 24(3), 373–377 (2004) (in Chinese).

Ann CIRP (6)

Y. Takaya, S. Takahashi, T. Miyoshi, and K. Saito, “Development of the Nano-CMM probe based on laser trapping technology,” Ann CIRP 48(1), 421–424 (1999).
[Crossref]

G. X. Zhang and S. M. Yang, “A 3D probe for measuring small blind holes,” Ann CIRP 44(1), 461–464 (1995).
[Crossref]

H. Haitjema, W. O. Pril, and P. H. J. Schellekens, “Development of a silicon-based nanoprobe system for 3-D measurements,” Ann CIRP 50(1), 365–368 (2001).
[Crossref]

T. Masuzawa, Y. Hamasaki, and M. Fujino, “Vibroscanning method for nondestructive measurement of small holes,” Ann CIRP 42(1), 589–592 (1993).
[Crossref]

T. Masuzawa, B. J. Kim, C. Bergaud, and M. Fujino, “Twin-probe vibroscanning method for dimensional measurement of microholes,” Ann CIRP 46(1), 437–440 (1997).
[Crossref]

H. Schwenke, F. Waldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann CIRP 50(1), 361–364 (2001).
[Crossref]

Annals of the CIRP (2)

G. N. Peggs, A. J. Lewis, and S. Oldfield, “Design for a compact High-Accuracy CMM,” Annals of the CIRP 48(1), 417–420 (1999).
[Crossref]

W. P. van Vliet and P. H. J. Schellekens, “Accuracy limitations of fast mechanical probing,” Annals of the CIRP 45(1), 483–487 (1996).
[Crossref]

Meas. Sci. Technol. (1)

S. Yang, S. Li, M. J. Kaiser, and E. H. K. Fung, “A probe for the measurement of diameters and form errors of small holes,” Meas. Sci. Technol. 9(9), 1365–1368 (1998).
[Crossref]

Precis. Eng. (1)

B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precis. Eng. 30(2), 154–164 (2006).
[Crossref]

Other (4)

T. Hashimoto, Y. Takaya, T. Miyoshi, and R. Nakajima, “Fundamental analysis on the novel 3-D probing technique for micro-parts using the optical fiber trapping,” In: Proceedings of the Annual Meeting of the ASPE, 83–86 (2003).

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” In: Proceedings of the ASPE Annual Meeting, 24–27 (2004).

R. Lu, “Design of a nanometer capacative probe,” Mechatronics design report, Eindhoven University, Stan Ackermans Institute(1999).

U. Brand, T. Kleine-Besten, and H. Schwenke, “Development of a special CMM for dimensional metrology on microsystem components,” In: Proceedings of the Annual Meeting of the ASPE, 542–546 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Micro focal-length collimation optical system. (a) Basic configuration. (b) Principal plane. n is the refractive index of fiber stem, r is the radius of fiber stem, f is the focal length of fiber stem used as cylindrical lens, and L is the image distance.
Fig. 2
Fig. 2 Fiber deflection in direction Y. S is the deflection of fiber stem, ray AB is the central ray of point light source and passes the center of fiber stem, YAB is the deflection of ray AB imaged in receiver plane, i is the angle of incidence, i' is the angle of refraction, n is the refractive index of fiber stem, r is the radius of fiber stem, f is the focal-length of fiber stem, and L is the image distance.
Fig. 3
Fig. 3 Sensing property in direction Y established by tracing the central ray AB. (a) Relationship graph of S —YAB. (b) Relationship graph of S — β.
Fig. 4
Fig. 4 Fiber deflection in direction X. S is the deflection of fiber stem, H is the bright band width of image, ray AC is the edge ray of point light source, ray AB is the central ray of point light source and passes the center of fiber stem, θ is the angle of ray AC to the optical axis, i is the angle of incidence, i' is the angle of refraction, f is the focal-length of fiber stem, L is the image distance, and r is the radius of fiber stem.
Fig. 5
Fig. 5 Sensing property in direction X established by tracing the edge ray AC. (a) Relationship graph of S — H. (b) Relationship graph of S — α.
Fig. 6
Fig. 6 Disturbance of drift angle of the parallel light.
Fig. 7
Fig. 7 Experiment setup.
Fig. 8
Fig. 8 Sensing property in direction Y established experimentally. (a) Resolution test with fiber deflection steps of 1 nm given to the stage. (b) Long rang test of fiber deflection.
Fig. 9
Fig. 9 Change in intensity distribution of image while fiber deflection is changed. (a) Change in grey image. (b) Change in the transversal section of intensity distribution image.
Fig. 10
Fig. 10 Sensing property in direction X established experimentally. (a) Long range test of fiber deflection. (b) Resolution test with fiber deflection steps of 3 nm given to the stage. Increasing S means the fiber stem is moving away from the point light source.
Fig. 11
Fig. 11 Micro cavity detector.
Fig. 12
Fig. 12 Data of diameter measurement. (a) Data on one side. (b) Data on the other side.
Fig. 13
Fig. 13 Diameter measurement results.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

f = n r / [ 2 ( n 1 ) ]
Y A B L × tan [ 2 ( i i ' ) ]
tan [ 2 ( i i ' ) ] = 2 tan ( i i ' ) / [ 1 tan 2 ( i i ' ) ]
tan ( i i ' ) = ( tan i tan i ) / ( 1 + tan i × tan i )
sin i = S / r
n sin i ' = sin i
β = d Y A B / d S
H 2 L × | tan [ θ 2 ( i i ) ] |
tan [ θ 2 ( i i ) ] = tan θ tan [ 2 ( i i ) ] 1 + tan θ × tan [ 2 ( i i ) ]
tan [ 2 ( i i ' ) ] = 2 tan ( i i ' ) / [ 1 tan 2 ( i i ' ) ]
tan ( i i ' ) = ( tan i tan i ) / ( 1 + tan i × tan i )
sin i / ( f + S ) = sin θ / r
n sin i ' = sin i
α = d H / d S
δ = f L × tan d θ
j c = i = 1 m j = 1 n [ j × f ( i , j ) ] / i = 1 m j = 1 n f ( i , j )
M = i = 1 m j = 1 n [ | j j c | × f ( i , j ) ]

Metrics