Abstract

Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
    [CrossRef]
  2. J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
    [CrossRef]
  3. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [CrossRef]
  4. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973).
    [CrossRef]
  5. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [CrossRef]
  6. J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
    [CrossRef]
  7. J. Reif, F. Costache, and M. Besthorn, in Recent Advances in Laser Processing of Materials, ed.(Elsevier, 2006), chap 9.
  8. A.J. Huis in’t Veld, J. van de Veer, “Initiation of femtosecond laser machined ripples in tseel observed by scanning helium ion microscopy (SHIM),” in Proceeding on Laser Precision Microfabrication (LPM), Japan (2009).
  9. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  10. A. Y. Vorobyev and C. Guo, “Chunlei Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [CrossRef]
  11. H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
    [CrossRef] [PubMed]
  12. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
    [CrossRef]
  13. J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
    [CrossRef]
  14. M. Groenendijk and J. Meijer, “Microstructuring Using Femtosecond Pulsed Laser Ablation,” J. Laser Appl. 18(3), 227–234 (2006).
    [CrossRef]
  15. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
    [CrossRef]
  16. B. Huis in’t Veld, M. Groenendijk and H. Fischer, “On the Origin, Growth and Application of Ripples,” in Proceedings of the 9th International Symposium on Laser Precision Microfabrication (LPM) Quebec, Canada (2008).
  17. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
    [CrossRef]
  18. B. Dusser, E. Audouard, M. Jourlin, H. Soder, A. Foucou, “Method and device for marking a surface using controlled periodic nanostructures,” patent, WO/2009/090324. (2007.
  19. A. R. Smith, “Color gamut transform pairs,” Comput. Graph. (ACM) 12(3), 12–19 (1978).
    [CrossRef]
  20. K. N. Plataniotis, and A. N. Venetsanopoulos, in Color Image Processing and Applications, ed (Springer Verlag,2000)
  21. J. P. Benzecri, “problème et méthode de la taxinomie,” Rev. Stat. Appl. 18, 73–78 (1970).
  22. J. P. Benzecri, in La Taxinomie, ed. (Dunot, 1973)
  23. S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika 32(3), 241–254 (1967).
    [CrossRef] [PubMed]
  24. N. Jardine, and R. Sibson, in Mathematical taxonomy, ed. (Wiley, New-York, 1971)
  25. T. Pavlidis, “Hierarchies in structural pattern recognition”, in Proceeding of IEEE, 67, (5), (1979), pp. 737–744.
  26. G. Dunn, and B. Everitt, in An introduction to Mathematical Taxonomy, ed.(Cambridge University Press,1982)
  27. J. P. Barthelemy and F. Brucker, ““Binary Clustering,”Journal of,” Discrete Appl. Math. 156(8), 1237–1250 (2008).
    [CrossRef]
  28. P. Arbeláez and L. Cohen, “A metric approach to vector-valued image segmentation,” Int. J. Comput. Vis. 69(1), 119–126 (2006).
    [CrossRef]
  29. J. P. Benzecri, “Construction d'une classification ascendante hierarchique par la recherche en chaîne des voisins reciproques,” Cah. Anal. Donnees 7, 209–218 (1982).
  30. B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
    [CrossRef]

2009 (2)

H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
[CrossRef] [PubMed]

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

2008 (3)

J. P. Barthelemy and F. Brucker, ““Binary Clustering,”Journal of,” Discrete Appl. Math. 156(8), 1237–1250 (2008).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Chunlei Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

2007 (2)

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[CrossRef]

2006 (2)

M. Groenendijk and J. Meijer, “Microstructuring Using Femtosecond Pulsed Laser Ablation,” J. Laser Appl. 18(3), 227–234 (2006).
[CrossRef]

P. Arbeláez and L. Cohen, “A metric approach to vector-valued image segmentation,” Int. J. Comput. Vis. 69(1), 119–126 (2006).
[CrossRef]

2005 (1)

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

2003 (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
[CrossRef]

1993 (1)

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

1984 (1)

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

1982 (1)

J. P. Benzecri, “Construction d'une classification ascendante hierarchique par la recherche en chaîne des voisins reciproques,” Cah. Anal. Donnees 7, 209–218 (1982).

1978 (1)

A. R. Smith, “Color gamut transform pairs,” Comput. Graph. (ACM) 12(3), 12–19 (1978).
[CrossRef]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973).
[CrossRef]

1970 (1)

J. P. Benzecri, “problème et méthode de la taxinomie,” Rev. Stat. Appl. 18, 73–78 (1970).

1967 (1)

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika 32(3), 241–254 (1967).
[CrossRef] [PubMed]

1965 (1)

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Arbeláez, P.

P. Arbeláez and L. Cohen, “A metric approach to vector-valued image segmentation,” Int. J. Comput. Vis. 69(1), 119–126 (2006).
[CrossRef]

Audouard, E.

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Barthelemy, J. P.

J. P. Barthelemy and F. Brucker, ““Binary Clustering,”Journal of,” Discrete Appl. Math. 156(8), 1237–1250 (2008).
[CrossRef]

Benzecri, J. P.

J. P. Benzecri, “Construction d'une classification ascendante hierarchique par la recherche en chaîne des voisins reciproques,” Cah. Anal. Donnees 7, 209–218 (1982).

J. P. Benzecri, “problème et méthode de la taxinomie,” Rev. Stat. Appl. 18, 73–78 (1970).

Birnbaum, M.

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Brucker, F.

J. P. Barthelemy and F. Brucker, ““Binary Clustering,”Journal of,” Discrete Appl. Math. 156(8), 1237–1250 (2008).
[CrossRef]

Celli, V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Cohen, L.

P. Arbeláez and L. Cohen, “A metric approach to vector-valued image segmentation,” Int. J. Comput. Vis. 69(1), 119–126 (2006).
[CrossRef]

Dusser, B.

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973).
[CrossRef]

Foucou, A.

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

Garrelie, F.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Groenendijk, M.

M. Groenendijk and J. Meijer, “Microstructuring Using Femtosecond Pulsed Laser Ablation,” J. Laser Appl. 18(3), 227–234 (2006).
[CrossRef]

Guillermin, M.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Chunlei Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973).
[CrossRef]

Jana, S.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Johnson, S. C.

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika 32(3), 241–254 (1967).
[CrossRef] [PubMed]

Jourlin, M.

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Lau, M. W. S.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Lim, L. E. N.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Lin, Z.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Lochbihler, H.

H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
[CrossRef] [PubMed]

Mater, J.

J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
[CrossRef]

Meijer, J.

M. Groenendijk and J. Meijer, “Microstructuring Using Femtosecond Pulsed Laser Ablation,” J. Laser Appl. 18(3), 227–234 (2006).
[CrossRef]

Noor, Y. M.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Qi, J.

J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Sagan, Z.

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

Sanner, N.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Sipe, J. E.

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Smith, A. R.

A. R. Smith, “Color gamut transform pairs,” Comput. Graph. (ACM) 12(3), 12–19 (1978).
[CrossRef]

Soder, H.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Tam, S. C.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

van Driel, H. M.

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Chunlei Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Wang, J.

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

Wang, K. L.

J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
[CrossRef]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973).
[CrossRef]

Yang, L. J.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Yeo, C. Y.

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Young, J. F.

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Zhigilei, L. V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Zhu, Y. M.

J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Chunlei Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi- pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Cah. Anal. Donnees (1)

J. P. Benzecri, “Construction d'une classification ascendante hierarchique par la recherche en chaîne des voisins reciproques,” Cah. Anal. Donnees 7, 209–218 (1982).

Comput. Graph. (ACM) (1)

A. R. Smith, “Color gamut transform pairs,” Comput. Graph. (ACM) 12(3), 12–19 (1978).
[CrossRef]

Discrete Appl. Math. (1)

J. P. Barthelemy and F. Brucker, ““Binary Clustering,”Journal of,” Discrete Appl. Math. 156(8), 1237–1250 (2008).
[CrossRef]

Int. J. Comput. Vis. (1)

P. Arbeláez and L. Cohen, “A metric approach to vector-valued image segmentation,” Int. J. Comput. Vis. 69(1), 119–126 (2006).
[CrossRef]

J. Appl. Phys. (2)

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[CrossRef]

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

J. Laser Appl. (1)

M. Groenendijk and J. Meijer, “Microstructuring Using Femtosecond Pulsed Laser Ablation,” J. Laser Appl. 18(3), 227–234 (2006).
[CrossRef]

J. Mater. Process. Technol. (1)

J. Qi, K. L. Wang, Y. M. Zhu, and J. Mater, “A study on the laser marking process of stainless steel,” J. Mater. Process. Technol. 139(1-3), 273–276 (2003).
[CrossRef]

Opt. Express (1)

H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (3)

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Proc. Inst. Mech. Eng., B J. Eng. Manuf. (1)

S. C. Tam, Y. M. Noor, L. E. N. Lim, S. Jana, L. J. Yang, M. W. S. Lau, and C. Y. Yeo, “Marking of leadless chip carriers with a pulsed Nd:YAG laser,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 207(32), 179–192 (1993).
[CrossRef]

Proc. SPIE (1)

B. Dusser, Z. Sagan, A. Foucou, E. Audouard, and M. Jourlin, “News applications in authentication and traceability using ultrafast laser marking,” Proc. SPIE 7201, 72010V (2009).
[CrossRef]

Psychometrika (1)

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika 32(3), 241–254 (1967).
[CrossRef] [PubMed]

Rev. Stat. Appl. (1)

J. P. Benzecri, “problème et méthode de la taxinomie,” Rev. Stat. Appl. 18, 73–78 (1970).

Other (9)

J. P. Benzecri, in La Taxinomie, ed. (Dunot, 1973)

K. N. Plataniotis, and A. N. Venetsanopoulos, in Color Image Processing and Applications, ed (Springer Verlag,2000)

N. Jardine, and R. Sibson, in Mathematical taxonomy, ed. (Wiley, New-York, 1971)

T. Pavlidis, “Hierarchies in structural pattern recognition”, in Proceeding of IEEE, 67, (5), (1979), pp. 737–744.

G. Dunn, and B. Everitt, in An introduction to Mathematical Taxonomy, ed.(Cambridge University Press,1982)

J. Reif, F. Costache, and M. Besthorn, in Recent Advances in Laser Processing of Materials, ed.(Elsevier, 2006), chap 9.

A.J. Huis in’t Veld, J. van de Veer, “Initiation of femtosecond laser machined ripples in tseel observed by scanning helium ion microscopy (SHIM),” in Proceeding on Laser Precision Microfabrication (LPM), Japan (2009).

B. Huis in’t Veld, M. Groenendijk and H. Fischer, “On the Origin, Growth and Application of Ripples,” in Proceedings of the 9th International Symposium on Laser Precision Microfabrication (LPM) Quebec, Canada (2008).

B. Dusser, E. Audouard, M. Jourlin, H. Soder, A. Foucou, “Method and device for marking a surface using controlled periodic nanostructures,” patent, WO/2009/090324. (2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

On the right, example of color effects obtained by controlled nanostructures with a femtosecond laser chain on a 316L stainless steel sample, on the left, SEM X6000 images of controlled nanostructures marked with two different orientations.

Fig. 2
Fig. 2

Writing experimental set up with a femtosecond laser (2 W, 150 fs, 800 nm, 5 kHz). The figure show the two optical ways use in this article. The optical way 1 uses a rotating mirrors (HurrySCAN) with a F-Theta objective lens (f = 88 mm) and the optical way 2 uses an achromat doublet lenses (f = 50.8 mm).

Fig. 3
Fig. 3

Schematic Illustration of the light's optical path in a used scanner showed the principle of the reading procedure (see text).

Fig. 4
Fig. 4

SEM X6000 images of ripples obtained with the “optical way 2” femtosecond laser chain (150 fs, 800 nm, 5 kHz, achromat doublet lenses: f = 50.8 mm) on stainless steel 316L. The different ripples aspects are obtained with a beam power from 25 mW to 100 mW (fluence from 0.4 J.cm-2 to 1.6 J.cm-2) for rotating mirrors speed from 20 mm.s-1 to 130 mm.s-1.

Fig. 5
Fig. 5

SEM X6000 images of ripples obtained with a femtosecond laser chain (150 fs, 800 nm, 5 kHz, rotating mirrors) on stainless steel (316L). The different ripples aspects are obtained with a beam power from 25 to 100 mW (fluence from 0.4 J.cm-2 to 1.6 J.cm-2) with a 20mm.s-1 rotating mirrors speed. On the left, the ripples are obtained with the “optical way 2” (achromat doublet lenses: f = 50.8mm) and on the right, the ripples are obtained with the “optical way 1” (rotating mirrors, F-Theta lens: f = 88mm).

Fig. 6
Fig. 6

Optical microscope image X2000 of ripples obtained with the “optical way 2” femtosecond laser chain (25 mW, 0.4 J.cm-2, 150 fs, 800 nm, 5 kHz, achromat doublet lenses: f = 50.8 mm). The overlapping process is use on the left, and the point by point process is used on the right.

Fig. 7
Fig. 7

SEM image X6000 of ripples obtained with the “optical way 2” femtosecond laser chain (P = 100 mW, F = 1.6 J.cm-2, rotating mirrors speed = 20 mm.s-1) on stainless steel 316L. On the left, ripples marked with a 0° polarization angle. In middle, ripples marked with a 45° polarization angle. On the right, ripples marked with a 90° polarization angle.

Fig. 8
Fig. 8

Scanned image (1200 dpi) of stainless steal sample (316L) marked by 9 lines of nineteen squares obtained with the “optical way 1” femtosecond laser chain (P = 25 mW, F = 0.4 J.cm-2). Each line uses a “point by point” marking method and each square has been marked with different ripples orientations (from 0° to 90°). Each point of the scroll up lines has been marked with different numbers of laser pulses (from 1 laser pulse/point on the bottom line to 255 laser pulses/point on the top line).

Fig. 9
Fig. 9

Scanned image (1200 dpi) of stainless steel sample (316L) marked by thirty six discs section obtained with the “optical way 1” femtosecond laser chain (P = 25 mW, F = 0.4 J.cm-2). Each section have been marked with different ripples orientations (from 0° to 350°).

Fig. 10
Fig. 10

Evolution of HSV (Hue, Saturation, Value) components perceived by the scanner acquisition of different colors obtained by ripples laser marking depending on ripples orientation.

Fig. 11
Fig. 11

Example of Ascendant Hierarchic Classification dendrogram obtained with ripples color (i) marking process (eighteen ripples orientations).

Fig. 12
Fig. 12

Segmentation by image processing into height laser marking planes (b) of an initial image (a) and computer simulation of the expected color marking result (c). Scanner image (1200 dpi) of stainless steal sample (316L) marked with height planes of ripples (d). Each plane is marked with his own ripples orientation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ = d ( sin α + sin β )
m λ = d ( sin α cos θ + sin β )

Metrics