Abstract

Perfusion measurements using conventional laser Doppler techniques are affected by the variations in tissue optical properties. Differences in absorption and scattering will induce different path lengths and consequently will alter the probability that a Doppler shift will occur. In this study, the fraction of Doppler shifted photons and the Doppler broadening of a dynamic medium, are measured with a phase modulated low coherence Mach-Zehnder interferometer. Path length-resolved dynamic light scattering measurements are performed in various media having a constant concentration of dynamic particles inside a static matrix with different scattering properties and the results are compared with a conventional laser Doppler technique, with a simple model and with Monte Carlo simulations. We demonstrate that, for larger optical path lengths, the scattering coefficient of the static matrix in which the moving particles are embedded have a small to minimal effect on the measured fraction of Doppler shifted photons and on the measured average Doppler frequency of the Doppler shifted light. This approach has potential applications in measuring perfusion independent of the influence of optical properties in the static tissue matrix.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Shepherd, and P. Å. Öberg, Laser-Doppler Blood Flowmetry (Kluwer Academic, Boston, 1990).
  2. M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
    [PubMed]
  3. A. Liebert, M. Leahy, and R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination,” Med. Biol. Eng. Comput. 36(6), 740–747 (1998).
    [CrossRef]
  4. R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28(12), 2238–2244 (1989).
    [CrossRef] [PubMed]
  5. A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Rev. Sci. Instrum. 66(11), 5169–5173 (1995).
    [CrossRef]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  7. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664 (1998).
    [CrossRef]
  8. A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
    [CrossRef]
  9. A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26(19), 1492–1494 (2001).
    [CrossRef]
  10. A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
    [CrossRef]
  11. K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30(5), 555–557 (2005).
    [CrossRef] [PubMed]
  12. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
    [CrossRef] [PubMed]
  13. B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
    [CrossRef] [PubMed]
  14. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
    [CrossRef]
  15. G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22(4), 343–348 (1984).
    [CrossRef] [PubMed]
  16. F. F. M. De Mul, “Monte-Carlo simulation of Light transport in Turbid Media”, in: Handbook of Coherent Domain Optical Methods, Biomedical Diagnostics, Environment and Material Science, Tuchin, Valery V. (Ed.), 2004, Kluwer Publishers, 465–533 (2004).
  17. M. Larsson, H. Nilsson, and T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42(1), 124–134 (2003).
    [CrossRef] [PubMed]

2008 (1)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
[CrossRef]

2007 (2)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

2005 (1)

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30(5), 555–557 (2005).
[CrossRef] [PubMed]

2003 (1)

M. Larsson, H. Nilsson, and T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42(1), 124–134 (2003).
[CrossRef] [PubMed]

2002 (1)

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
[CrossRef]

2001 (2)

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26(19), 1492–1494 (2001).
[CrossRef]

1999 (1)

M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
[PubMed]

1998 (2)

A. Liebert, M. Leahy, and R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination,” Med. Biol. Eng. Comput. 36(6), 740–747 (1998).
[CrossRef]

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664 (1998).
[CrossRef]

1995 (1)

A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Rev. Sci. Instrum. 66(11), 5169–5173 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28(12), 2238–2244 (1989).
[CrossRef] [PubMed]

1984 (1)

G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22(4), 343–348 (1984).
[CrossRef] [PubMed]

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664 (1998).
[CrossRef]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664 (1998).
[CrossRef]

Bonner, R. F.

R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28(12), 2238–2244 (1989).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Dasari, R. R.

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
[CrossRef]

de Mul, F. F. M.

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26(19), 1492–1494 (2001).
[CrossRef]

M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
[PubMed]

Feld, M. S.

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ishii, K.

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30(5), 555–557 (2005).
[CrossRef] [PubMed]

Iwai, T.

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30(5), 555–557 (2005).
[CrossRef] [PubMed]

Larsson, M.

M. Larsson, H. Nilsson, and T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42(1), 124–134 (2003).
[CrossRef] [PubMed]

Leahy, M.

A. Liebert, M. Leahy, and R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination,” Med. Biol. Eng. Comput. 36(6), 740–747 (1998).
[CrossRef]

A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Rev. Sci. Instrum. 66(11), 5169–5173 (1995).
[CrossRef]

Leahy, M. J.

M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
[PubMed]

Liebert, A.

A. Liebert, M. Leahy, and R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination,” Med. Biol. Eng. Comput. 36(6), 740–747 (1998).
[CrossRef]

A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Rev. Sci. Instrum. 66(11), 5169–5173 (1995).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Maniewski, R.

M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
[PubMed]

A. Liebert, M. Leahy, and R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination,” Med. Biol. Eng. Comput. 36(6), 740–747 (1998).
[CrossRef]

A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Rev. Sci. Instrum. 66(11), 5169–5173 (1995).
[CrossRef]

Nilsson, G. E.

M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
[PubMed]

G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22(4), 343–348 (1984).
[CrossRef] [PubMed]

Nilsson, H.

M. Larsson, H. Nilsson, and T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42(1), 124–134 (2003).
[CrossRef] [PubMed]

Nossal, R.

R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28(12), 2238–2244 (1989).
[CrossRef] [PubMed]

Petoukhova, A. L.

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26(19), 1492–1494 (2001).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rajan, V.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
[CrossRef]

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664 (1998).
[CrossRef]

Steenbergen, W.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
[CrossRef]

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26(19), 1492–1494 (2001).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strömberg, T.

M. Larsson, H. Nilsson, and T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42(1), 124–134 (2003).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Van Leeuwen, T. G.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
[CrossRef]

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
[CrossRef]

Varghese, B.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
[CrossRef]

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

Wax, A.

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
[CrossRef]

Weiss, G. H.

R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28(12), 2238–2244 (1989).
[CrossRef] [PubMed]

Yang, C.

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
[CrossRef]

Yoshida, R.

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30(5), 555–557 (2005).
[CrossRef] [PubMed]

Appl. Opt. (3)

R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28(12), 2238–2244 (1989).
[CrossRef] [PubMed]

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition from Single to Diffusive Scattering,” Appl. Opt. 40(24), 4222–4227 (2001).
[CrossRef]

M. Larsson, H. Nilsson, and T. Strömberg, “In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry,” Appl. Opt. 42(1), 124–134 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81(4), 595–597 (2002).
[CrossRef]

J. Biomed. Opt. (1)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (2)

G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22(4), 343–348 (1984).
[CrossRef] [PubMed]

A. Liebert, M. Leahy, and R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimination,” Med. Biol. Eng. Comput. 36(6), 740–747 (1998).
[CrossRef]

Opt. Commun. (1)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light,” Opt. Commun. 281(3), 494–498 (2008).
[CrossRef]

Opt. Express (1)

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express 15(15), 9157–9165 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett. 30(5), 555–557 (2005).
[CrossRef] [PubMed]

A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26(19), 1492–1494 (2001).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Liebert, M. Leahy, and R. Maniewski, “A calibration standard for laser-Doppler perfusion measurements,” Rev. Sci. Instrum. 66(11), 5169–5173 (1995).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Technol. Health Care (1)

M. J. Leahy, F. F. M. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999).
[PubMed]

Other (2)

A. P. Shepherd, and P. Å. Öberg, Laser-Doppler Blood Flowmetry (Kluwer Academic, Boston, 1990).

F. F. M. De Mul, “Monte-Carlo simulation of Light transport in Turbid Media”, in: Handbook of Coherent Domain Optical Methods, Biomedical Diagnostics, Environment and Material Science, Tuchin, Valery V. (Ed.), 2004, Kluwer Publishers, 465–533 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The heterodyne power spectrum appearing at the modulation frequency measured for monodisperse water suspensions of Polystyrene microspheres (∅0.20 μm and ∅4.7 μm) and with a mirror, normalized to their maximum value, for an optical path length of 2 mm.

Fig. 2
Fig. 2

The fraction of Doppler shifted photons as a function of optical path length, as a result of experiments (open markers), Monte Carlo simulations (filled markers), and experimental decay models, one with a theoretical decay rate (dashed line), and one with the best fit to the experimental results (thick line).

Fig. 3
Fig. 3

The Doppler shift measured as a function of optical path length in the medium.

Fig. 4
Fig. 4

The average Doppler broadening as represented by M1/M0 for the laser Doppler perfusion monitor, and the average value < M1/M0> for all optical path lengths for the low coherence interferometer and normalized by the maximum value for the three media.

Fig. 5
Fig. 5

Left: Mie scattering phase functions for ∅4.7 and ∅0.2 micrometer polystyrene particles (n=1.56) in water (n=1.33). Right: configuration, drawn on scale, of illumination and detection fibers (spacing 300 micrometers), and their numerical apertures (0.29 and 0.15 respectively) with the common region shaded grey. The dotted and dashed photon trajectories are discussed in the main text.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M i ( a , b , ω m ) ω m + a ω m + b P ( ω ) ( ω ω m ) i d ω

Metrics