Abstract

We present both numerical and experimental studies of an all-fiber device based on the integration of metallic electrodes into photonic crystal fibers (PCF). The device operation consists on applying electrical current to the electrodes which, by Joule effect, expand and squeeze the PCF microstructure in a preferential direction, altering both phase and group birefringence. We investigate the effect of integrating electrodes into the fiber and the dependence of the device sensitivity on the electrode configuration and composition.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
    [CrossRef]
  3. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007).
    [CrossRef] [PubMed]
  4. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
    [CrossRef] [PubMed]
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  6. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
    [CrossRef] [PubMed]
  7. F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
    [PubMed]
  8. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
    [CrossRef] [PubMed]
  9. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
    [CrossRef] [PubMed]
  10. S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
    [CrossRef] [PubMed]
  11. S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7(6), 294–296 (1982).
    [CrossRef] [PubMed]

2009

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
[CrossRef] [PubMed]

2007

H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

2003

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

2001

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

1982

S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7(6), 294–296 (1982).
[CrossRef] [PubMed]

Beltrán-Mejía, F.

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

Berlemont, D.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Bjarklev, A.

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Broeng, J.

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Carvalho, I. C. S.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

Chesini, G.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

Claesson, A.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Cordeiro, C. M. B.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

de Matos, C. J. S.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

Eggleton, B. J.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

Fokine, M.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Fonjallaz, P.-Y.

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

George, A. K.

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

Guyenot, V.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Hale, A.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

Han, W.-T.

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
[CrossRef] [PubMed]

Hermann, D. S.

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Kerbage, C.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

Kim, B. H.

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
[CrossRef] [PubMed]

Kjellberg, L.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Knape, H.

H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

Knight, J. C.

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

Krummenacher, L.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Larsen, T. T.

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Lee, S. H.

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
[CrossRef] [PubMed]

Liem, A.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Limpert, J.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Margulis, W.

H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Nilsson, L. E.

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

Nolte, S.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Peschel, T.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Rashleigh, S. C.

S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7(6), 294–296 (1982).
[CrossRef] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Schreiber, T.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Silvestre, E.

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

Tarasenko, O.

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

Tünnermann, A.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Westbrook, P. S.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

Windeler, R. S.

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

Zellmer, H.

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

Opt. Express

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17(3), 1660–1665 (2009).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
[CrossRef] [PubMed]

Opt. Lett.

S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7(6), 294–296 (1982).
[CrossRef] [PubMed]

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, “Ultra-high birefringent squeezed lattice photonic crystal fiber with rotated elliptical air-hole,” Opt. Lett. (to be published).
[PubMed]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[CrossRef]

H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007).
[CrossRef] [PubMed]

Science

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross-sectional SEM view of the PCF under study. White bar represents 10µm. (b) Schematic draw of the device operation. Electrical current is applied to one electrode that, by Joule effect, heats the entire fiber and squeezes the fiber microstructure. (c) Typical image of the temperature gradient inside the fiber after the application of electrical current. Red (blue) means higher (lower) temperature.

Fig. 2
Fig. 2

(a) Effective refractive indices (neff-x and neff-y) of the fundamental mode at 633nm, as a function of the electrical current. (b) Bphase for two device configurations: two electrodes (one active) and one electrode (c) Temperature as a function of time for a 20mA on-off cycle. (d) Stress-induced material birefringence for different electrodes composition: Bismuth (Bi), 43Bi-Sn57 alloy, Indium (In), and Tin (Sn).

Fig. 3
Fig. 3

Setup for optical characterization. A current source provides the electrical signal applied to the optical fiber.

Fig. 4
Fig. 4

Optical signal of (a) Bi-Sn and (b) Bi electrodes with the application of electrical current. Φ0(Bi-Sn) and Φ0(Bi) are the “intrinsic” phase related to the length of the device. Bi-Sn device requires 18mA to alter the phase of light by π while in the Bi device it takes only 14mA to do the same. (c) Pattern of a PCF without metal (black upper curve), with Bi electrodes (red middle curve) and with 30mA (blue lower curve) in the wavelength scanning method.

Tables (1)

Tables Icon

Table 1 Numerical results for 43Bi-Sn57 and Bi devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = 2 π λ Δ L
B g ( λ ) = B p ( λ ) λ B p ( λ ) / λ

Metrics