Abstract

This work demonstrates photo alignment and electrical tuning effects in photonic liquid crystal fiber (PLCF). Applying voltages of 0~130V and 250~400V shifts the short and long wavelength edges of the transmission bands by about 45nm and 74nm toward longer wavelengths, respectively. An electro-tunble notch filter is formed in the PLCF without the use of gratings. The range of tunability of the notch filter is around 180nm with an applied voltage of 140~240V. This photo-induced alignment yields a permanently tilted LC structure in PCF, which reduces the threshold voltage, and can be further modulated by electric fields. The polarization dependent loss and fast response time of photo-aligned PLCF is also demonstrated. The finite-difference frequency-domain method is adopted to analyze the shift of the transmission bandgap, and the simulation results are found to correlate well with experimental data.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  3. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
    [CrossRef] [PubMed]
  4. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
    [CrossRef] [PubMed]
  5. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
    [CrossRef] [PubMed]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002) 466–468.
  7. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
    [CrossRef] [PubMed]
  8. T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
    [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  10. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
    [CrossRef]
  11. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
    [CrossRef] [PubMed]
  12. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
    [CrossRef] [PubMed]
  13. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
    [CrossRef] [PubMed]
  14. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [CrossRef]
  15. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [CrossRef]
  16. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
    [CrossRef] [PubMed]
  17. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
    [CrossRef]
  18. V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 17, 12670–12676 (2007).
  19. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [CrossRef] [PubMed]
  20. S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88(4), 041104 (2006).
    [CrossRef]
  21. T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
    [CrossRef]
  22. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
    [CrossRef]
  23. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [CrossRef]
  24. C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12(7), 1397–1408 (2004).
    [CrossRef] [PubMed]

2009

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

2008

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

2007

V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 17, 12670–12676 (2007).

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
[CrossRef] [PubMed]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

2006

S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88(4), 041104 (2006).
[CrossRef]

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

2005

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

2004

C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12(7), 1397–1408 (2004).
[CrossRef] [PubMed]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

2003

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Alkeskjold, T. T.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

Anawati, A.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

Bang, O.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

Bartelt, H.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

Bassi, P.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

Bjarklev, A.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Borelli, E.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

Broeng, J.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Chang, H. C.

C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12(7), 1397–1408 (2004).
[CrossRef] [PubMed]

Czapla, A.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Dabrowski, R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Demokan, M. S.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Domanski, A. W.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Dománski, A. W.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Dong, X.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Du, J.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Ertman, S.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Eskildsen, L.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Fuh, A. Y.-G.

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88(4), 041104 (2006).
[CrossRef]

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

Fuh, H.-R.

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Hermann, D. S.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Hsiao, V. K. S.

V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 17, 12670–12676 (2007).

Huang, S.-Y.

S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88(4), 041104 (2006).
[CrossRef]

Hung, S.-Y.

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

Jau, H.-C.

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

Jin, W.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Kitzerow, H.-S.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

Ko, C.-Y.

V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 17, 12670–12676 (2007).

Kobelke, J.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

Laegsgaard, J.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

Lægsgaard, J.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

Larsen, T. T.

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Lesiak, P.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Li, J.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

Lin, L.-C.

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

Lin, T.-H.

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

Liu, B.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

Liu, Y.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

Lorenz, A.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Nielsen, M.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Noordegraaf, D.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

Nowecka, K.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Riishede, J.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Rindorf, L.

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Schwuchow, A.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

Scolari, L.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Szaniawska, K.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Tanggaard Alkeskjold, T.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

Tartarini, G.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

Wang, Y.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Wang, Z.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

Wei, L.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

Weirich, J.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

Wojcik, J.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Wójcik, J.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Wolinski, T. R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Wolínski, T. R.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Wu, S. T.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

Wu, S.-T.

S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88(4), 041104 (2006).
[CrossRef]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Xiao, L.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Yu, C. P.

C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12(7), 1397–1408 (2004).
[CrossRef] [PubMed]

Yuan, W.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

Zhao, C.-L.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Zou, B.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

Appl. Opt.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88(4), 041104 (2006).
[CrossRef]

T.-H. Lin, H.-C. Jau, S.-Y. Hung, H.-R. Fuh, and A. Y.-G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89(2), 021116 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

J. Appl. Phys.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

J. Lightwave Technol.

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Meas. Sci. Technol.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Opt. Express

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
[CrossRef] [PubMed]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12(7), 1397–1408 (2004).
[CrossRef] [PubMed]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 17, 12670–12676 (2007).

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

Opt. Lett.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
[CrossRef] [PubMed]

Science

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002) 466–468.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for obtaining transmission spectra of PLCFs with an optical and electric field. SMF:single mode fiber, PCF:photonic crystal fiber, PLCF:photonic liquid crystal fiber.

Fig. 2
Fig. 2

Transmission spectrum of photonic liquid crystal fibers to which is applied (a) 60 to 130V, (b) 160 to 240V and (c) 250 to 400V; its corresponding band-edge shifts of (d) short wavelength edge, (e) dip, and (f) long wavelength edge.

Fig. 4
Fig. 4

Transmission spectrum of photo-aligned photonic liquid crystal fibers to which is applied (a) 60 to 120V, (b) 160 to 200V and (c) 250 to 400V; corresponding band-edge shift of (d) short wavelength edge, (e) dip, and (f) long wavelength edge.

Fig. 3
Fig. 3

Images of photo-aligned PLCF under crossed POM with illumination for (a) 0 min and (b) 170 min. (c) and (d) show the transmission spectrum and band edge shifting of photo-aligned PLCF. A: analyzer, P: polarizer.

Fig. 5
Fig. 5

(a) Rise time and (b) fall time of photo-aligned photonic liquid crystal fibers at an applied voltage of 400V, 1kHz.

Fig. 6
Fig. 6

Polarization-dependence of photo-aligned PLCF (a) without (b) under applied electric field of 400V.

Metrics