Abstract

A hybrid plasmonic waveguide structure is proposed and fabricated for low-loss lightwave guiding along a metal stripe core. By embedding Au stripe in dual slab waveguides with high refractive-index contrast, the field of the guided mode is confined more in the two dielectric core layers. Thus, the propagation loss is significantly reduced. The guided mode is like a combination of a fundamental long-range surface plasmon polariton strip mode and a dual symmetric dielectric slab mode. We fabricate 5 nm-thick Au stripe optical waveguides and measure the optical properties at a wavelength of 1.31 µm. The propagation loss is less than 1.0 dB/cm with the metal stripe width of 1–5 μm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [CrossRef]
  4. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
    [CrossRef] [PubMed]
  5. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
    [CrossRef] [PubMed]
  6. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
    [CrossRef] [PubMed]
  7. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
    [CrossRef]
  8. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
    [CrossRef]
  9. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
    [CrossRef] [PubMed]
  10. J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
  11. J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
    [CrossRef]
  12. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
    [CrossRef] [PubMed]
  13. R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-plariton modes by thin dielectric layers,” J. Appl. Phys. 105(3), 034306 (2009).
    [CrossRef]
  14. F. I. M. M. W. A. V. E. Version, 4.6, a vectorial waveguide solver. Photon Design, 2006.
  15. C. Reale, “Optical constants of vacuum deposited thin metal films in the near infrared,” Infrared Phys. 10(3), 173–181 (1970).
    [CrossRef]

2009 (4)

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-plariton modes by thin dielectric layers,” J. Appl. Phys. 105(3), 034306 (2009).
[CrossRef]

2008 (1)

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

2007 (1)

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

2006 (1)

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1970 (1)

C. Reale, “Optical constants of vacuum deposited thin metal films in the near infrared,” Infrared Phys. 10(3), 173–181 (1970).
[CrossRef]

Adato, R.

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-plariton modes by thin dielectric layers,” J. Appl. Phys. 105(3), 034306 (2009).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
[CrossRef] [PubMed]

Berini, P.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Charbonneau, R.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Choe, J.-S.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

Guo, J.

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-plariton modes by thin dielectric layers,” J. Appl. Phys. 105(3), 034306 (2009).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
[CrossRef] [PubMed]

Jetté-Charbonneau, S.

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

Ju, J. J.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Kim, J. T.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Kim, M.-

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

Kim, M. S.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Kim, M.-S.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

Lee, J.-M.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

Lee, M. H.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Lee, M.-H.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Lee, W.-J.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Mattiussi, G.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Park, S.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Park, S. K.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Reale, C.

C. Reale, “Optical constants of vacuum deposited thin metal films in the near infrared,” Infrared Phys. 10(3), 173–181 (1970).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Shin, S.-Y.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

Appl. Phys. Lett. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

ETRI J. (1)

J. T. Kim, S. Park, S. K. Park, M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.- Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Infrared Phys. (1)

C. Reale, “Optical constants of vacuum deposited thin metal films in the near infrared,” Infrared Phys. 10(3), 173–181 (1970).
[CrossRef]

J. Appl. Phys. (2)

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-plariton modes by thin dielectric layers,” J. Appl. Phys. 105(3), 034306 (2009).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polarition waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Opt. Express (5)

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006).
[CrossRef] [PubMed]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17(2), 697–702 (2009).
[CrossRef] [PubMed]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Other (1)

F. I. M. M. W. A. V. E. Version, 4.6, a vectorial waveguide solver. Photon Design, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-sectional view of the hybrid plasmonic waveguide and calculated guided mode. (a)A thin metal stripe is embedded between dual slab waveguide with high refractive-index contrast and (b) calculated guided mode.

Fig. 2
Fig. 2

Calculated guided mode of the proposed hybrid plasmonic waveguide as a function of (a)–(c) metal stripe width w, (d)–(f) inner-cladding thickness h.

Fig. 3
Fig. 3

Ey field profiles of the hybrid plasmonic waveguide with the variation of the inner-cladding thickness h.

Fig. 4
Fig. 4

Calculated propagation loss of the hybrid plasmonic waveguide depending on the inner-cladding thickness and the metal stripe width.

Fig. 5
Fig. 5

Measured propagation and coupling losses of fabricated hybrid plasmonic waveguide.

Fig. 6
Fig. 6

Microscope images of the observed far-field guided mode of the hybrid plasmonic waveguide.

Metrics