Abstract

A method for three-dimensional 3-D optical distortion (refraction) correction on anterior segment Optical Coherence Tomography (OCT) images has been developed. The method consists of 3-D ray tracing through the different surfaces, following denoising, segmentation of the surfaces, Delaunay representation of the surfaces, and application of fan distortion correction. The correction has been applied theoretically to realistic computer eye models, and experimentally to OCT images of: an artificial eye with a Polymethyl Methacrylate (PMMA) cornea and an intraocular lens (IOL), an enucleated porcine eye, and a human eye in vivo obtained from two OCT laboratory set-ups (time domain and spectral). Data are analyzed in terms of surface radii of curvature and asphericity. Comparisons are established between the reference values for the surfaces (nominal values in the computer model; non-contact profilometric measurements for the artificial eye; Scheimpflug imaging for the real eyes in vivo and vitro). The results from the OCT data were analyzed following the conventional approach of dividing the optical path by the refractive index, after application of 2-D optical correction, and 3-D optical correction (in all cases after fan distortion correction). The application of 3-D optical distortion correction increased significantly both the accuracy of the radius of curvature estimates and particularly asphericity of the surfaces, with respect to conventional methods of OCT image analysis. We found that the discrepancies of the radii of curvature estimates from 3-D optical distortion corrected OCT images are less than 1% with respect to nominal values. Optical distortion correction in 3-D is critical for quantitative analysis of OCT anterior segment imaging, and allows accurate topography of the internal surfaces of the eye.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
    [CrossRef] [PubMed]
  2. P. Rosales, M. Dubbelman, S. Marcos, and G.L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
    [CrossRef] [PubMed]
  3. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [CrossRef]
  4. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
    [PubMed]
  5. A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
    [CrossRef] [PubMed]
  6. S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
    [CrossRef] [PubMed]
  7. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007).
    [CrossRef] [PubMed]
  8. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
    [CrossRef] [PubMed]
  9. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4842 .
    [CrossRef] [PubMed]
  10. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
    [CrossRef]
  11. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
    [CrossRef] [PubMed]
  12. P. Rosales and S. Marcos, “Pentacam Scheimpflug Quantative Imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25, 421–428 (2009).
    [CrossRef]
  13. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical Coherence Tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [CrossRef] [PubMed]
  14. F. A. Jakobiec, Ocular anatomy, embryology, and teratology (Harper & Row, Philadelphia, 1982).
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  16. C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 33(1), 98–103 (1992).
    [PubMed]
  17. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
    [CrossRef] [PubMed]
  18. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  19. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003).
    [CrossRef] [PubMed]
  20. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region,” Opt. Lett. 28(9), 707–709 (2003).
    [CrossRef] [PubMed]
  21. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28(11), 905–907 (2003).
    [CrossRef] [PubMed]
  22. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm,” Opt. Lett. 30(10), 1171–1173 (2005).
    [CrossRef] [PubMed]
  23. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [CrossRef]
  24. T. Simpson and D. Fonn, “Optical Coherence Tomography of the Anterior Segment,” Ocul. Surf. 6(3), 117–127 (2008).
    [PubMed]
  25. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
    [PubMed]
  26. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14880 .
    [CrossRef] [PubMed]
  27. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [CrossRef] [PubMed]
  28. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
    [PubMed]
  29. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
    [CrossRef] [PubMed]
  30. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
    [CrossRef] [PubMed]
  31. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated Analysis of OCT Images of the Crystalline Lens,” in: Ophthalmic Technologies XIX, edited by F. Manns, P. G. Söderberg, A. Ho Proc. of SPIE Vol. 7163, 716313 (2009).
  32. I. Takada, “Noise in Optical Low-Coherence Reflectrometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
    [CrossRef]
  33. A. G. Podoleanu, “Unbalanced versus Balanced Operation in an Optical Coherence Tomography System,” Appl. Opt. 39(1), 173–182 (2000).
    [CrossRef]
  34. R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A 23(11), 2747–2755 (2006).
    [CrossRef]
  35. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
    [CrossRef] [PubMed]
  36. J. B. Keller and H. B. Keller, “Determination of reflected and transmitted fields by geometrical optics,” J. Opt. Soc. Am. 40(1), 48–52 (1950).
    [CrossRef]
  37. J. E. Weddell, J. A. Alvarado, and M. J. Hogan, Histology of the human eye (W.B. Saunders and Co, 1971).
  38. M. J. Stafford, The histology and biology of the lens (Bausch & Lomb, 2001).
  39. G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
    [CrossRef] [PubMed]
  40. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
    [CrossRef] [PubMed]

2009 (6)

2008 (2)

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
[CrossRef] [PubMed]

T. Simpson and D. Fonn, “Optical Coherence Tomography of the Anterior Segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

2007 (3)

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
[CrossRef] [PubMed]

2006 (3)

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm,” Opt. Lett. 30(10), 1171–1173 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

2003 (6)

2002 (6)

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

2001 (2)

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

2000 (1)

1998 (1)

I. Takada, “Noise in Optical Low-Coherence Reflectrometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[CrossRef]

1992 (1)

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 33(1), 98–103 (1992).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1950 (1)

Ahnelt, P. K.

Anger, E. M.

Apolonski, A.

Atchison, D. A.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Bajraszewski, T.

Barbero, S.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Bell, T. L.

Bizheva, K.

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Chen, Z.

Choma, M.

Cowey, A.

de Castro, A.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007).
[CrossRef] [PubMed]

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Dorronsoro, C.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Drexler, W.

Dubbelman, M.

P. Rosales, M. Dubbelman, S. Marcos, and G.L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fonn, D.

T. Simpson and D. Fonn, “Optical Coherence Tomography of the Anterior Segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Haberle, B. R.

Haskell, R. C.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 33(1), 98–103 (1992).
[PubMed]

Hoeling, B. M.

Hoelzenbein, T.

Holzwarth, R.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Y.-C.

Huber, R.

Izatt, J.

Izatt, J. A.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Jiang, Y.

Jiménez-Alfaro, I.

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

Jung, G.

Kaluzny, B. J.

Karnowski, K.

Keller, H. B.

Keller, J. B.

Knight, J. C.

Kowalczyk, A.

Le, T.

Leitgeb, R.

Liao, D.

Lim, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Lloves, J. M.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Marcos, S.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug Quantative Imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25, 421–428 (2009).
[CrossRef]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical Coherence Tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4842 .
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and G.L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[CrossRef]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Mei, M.

Merayo-Lloves, J.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Moffat, B. A.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Morgan, J. E.

Navarro, R.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

Norrby, S.

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
[CrossRef] [PubMed]

Ortiz, S.

Pehamberger, H.

Pérez-Escudero, A.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Petersen, D. C.

Pivonka, A. E.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A. G.

Pope, J. M.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Povazay, B.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Remon, L.

Remón, L.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

Rollins, A. M.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug Quantative Imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25, 421–428 (2009).
[CrossRef]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and G.L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[CrossRef]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Russell, P. St. J.

Sarunic, M.

Sattmann, H.

Sawides, L.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Scherzer, E.

Schubert, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Siedlecki, D.

Simpson, T.

T. Simpson and D. Fonn, “Optical Coherence Tomography of the Anterior Segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

Smith, G.

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
[CrossRef] [PubMed]

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stur, M.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Takada, I.

I. Takada, “Noise in Optical Low-Coherence Reflectrometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[CrossRef]

Targowski, P.

Tempea, G.

Tian, J.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

Unterhuber, A.

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

van der Heijde, G.L.

P. Rosales, M. Dubbelman, S. Marcos, and G.L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

van der Heijde, R. G.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Vetterlein, M.

Völker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Wacheck, V.

Wadsworth, W. J.

Wang, X.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

Wang, Y.

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Wise, F. W.

Wojtkowski, M.

Xue, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

Yakovlev, V.

Yang, C.

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Zhang, C.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

Zhang, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Appl. Opt. (3)

Arch. Ophthalmol. (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Clin. Exp. Optom. (1)

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

I. Takada, “Noise in Optical Low-Coherence Reflectrometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001).
[PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 33(1), 98–103 (1992).
[PubMed]

J. Biomed. Opt. (1)

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (3)

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug Quantative Imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25, 421–428 (2009).
[CrossRef]

J. Vis. (1)

P. Rosales, M. Dubbelman, S. Marcos, and G.L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

Ocul. Surf. (1)

T. Simpson and D. Fonn, “Optical Coherence Tomography of the Anterior Segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

Opt. Express (6)

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14880 .
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4842 .
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (2)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[CrossRef] [PubMed]

Other (4)

F. A. Jakobiec, Ocular anatomy, embryology, and teratology (Harper & Row, Philadelphia, 1982).

J. E. Weddell, J. A. Alvarado, and M. J. Hogan, Histology of the human eye (W.B. Saunders and Co, 1971).

M. J. Stafford, The histology and biology of the lens (Bausch & Lomb, 2001).

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated Analysis of OCT Images of the Crystalline Lens,” in: Ophthalmic Technologies XIX, edited by F. Manns, P. G. Söderberg, A. Ho Proc. of SPIE Vol. 7163, 716313 (2009).

Supplementary Material (5)

» Media 1: AVI (4087 KB)     
» Media 2: AVI (4197 KB)     
» Media 3: AVI (4133 KB)     
» Media 4: AVI (3382 KB)     
» Media 5: AVI (1919 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of a scanning system plus a collimation-condensing lens in an anterior segment OCT system. See text for details.

Fig. 2
Fig. 2

a) Original segmented surfaces of a human cornea. b) Anterior surface plus incoming rays in blue c) Normals to the surface the surface in red. d) Refracted rays in red and reconstruction of the second surface.

Fig. 3
Fig. 3

a) Cross section of an artificial eye composed by a plastic cornea of PMMA and an IOL obtained by the TD-OCT. b) Resultant image after denoising and contrast enhancement (the additional, lower contrast lines are ghost images and easily removed in the segmentation process).

Fig. 4
Fig. 4

a) Movie (Media 3) with the data without filtering with the 3-D neighborhood algorithm. b) Movie (Media 4) showing the data after spurious points removal. c) Movie (Media 5) showing the points and the segmented layers.

Fig. 5
Fig. 5

a) 2-D representation of all cross sections obtained from the IOL using the TD-OCT. b) 3-D Representation of the surfaces extracted from the IOL, the anterior and the corrected posterior surfaces are wire represented while the raw data without correction is represented by the red discrete points.

Fig. 6
Fig. 6

a) 2-D representation of a cross-section obtained from the porcine cornea using the TD-OCT. b) The same cross section corrected using a 2-D ray tracing algorithm. c) 3-D representation of the anterior and posterior surfaces extracted from the porcine cornea. The raw data are represented by a mesh and the corrected posterior surface by solid color.

Fig. 7
Fig. 7

a) Movie (Media 1) of the 3-D cloud of points by correcting by the refractive index, b) (Media 2) Correcting in 3-D.

Tables (5)

Tables Icon

Table 1 Nominal data for computer eye model used in computer simulations

Tables Icon

Table 2 Retrieved data from the simulated OCT images, with three different type of data processing

Tables Icon

Table 3 IOL and artificial cornea dimensions: values from manufacturer, and estimates from non-contact profilometry and TD-OCT measurements

Tables Icon

Table 4 Anterior and posterior corneal dimensions of an enucleated porcine cornea: estimates from Scheimpflug imaging and TD-OCT measurements

Tables Icon

Table 5 Posterior cornea dimensions of a human eye in vivo: estimates from Scheimpflug imaging and sOCT.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R ¯ i j + 1 = R ¯ i j + L i j T ^ i j j = 0 , ... , m
D i j = j = 0 m n j L i j
T ^ i j + 1 = ( n j n j + 1 ) T ^ i j { ( n j n j + 1 ) T ^ i j N ^ i j 1 ( n j n j + 1 ) 2 [ 1 ( T ^ i j N ^ i j ) 2 ] } N ^ i j
{ { G x h j , G y h j , G z h j } = M h { X j , Y j , Z j } = ( 1 2 0 1 2 ) { X j , Y j , Z j } { G x v j , G y v j , G z v j } = M v { X j , Y j , Z j } = ( 1 / 2 0 1 / 2 ) { X j , Y j , Z j }
G h j ( i ) = [ G x h j ( m , n ) , G y h j ( m , n ) , G z h j ( m , n ) ] G v j ( i ) = [ G x v j ( m , n ) , G y v j ( m , n ) , G z v j ( m , n ) ]
N ^ i j = G ¯ h j ( i ) × G ¯ v j ( i ) G ¯ h j ( i ) × G ¯ v j ( i )
M T = [ 1 1 1 1 0 1 1 1 1 ] × [ 1 1 1 1 0 1 1 1 1 ] × [ 1 1 1 1 0 1 1 1 1 ]

Metrics