Abstract

The photoluminescence spectra from a quantum-dot exciton weakly-coupled to a planar photonic-crystal cavity is experimentally investigated by temperature tuning. Significant resonance shifts of the cavity mode are observed as the cavity mode spectrally approaches that of the exciton mode, showing the appearance of cavity-to-exciton attraction or mode pulling. Cavity-mode spectral shifts are also found theoretically using a master equation model that includes incoherent pump processes for the coupled exciton and cavity, pure dephasing, and allows for photon emission via radiation modes and the leaky cavity mode. Both experiments and theory show clear cavity mode spectral shifts in the photoluminescence spectra, when certain coupling parameters are met. However, discrepancies between the experimental data and theory, including more pronounced spectral shifts in the measurements, indicate that other unknown mode-pulling effects may also be occurring.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
    [Crossref] [PubMed]
  2. A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
    [Crossref] [PubMed]
  3. E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
    [Crossref]
  4. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
    [Crossref]
  5. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref] [PubMed]
  6. J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
    [Crossref] [PubMed]
  7. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
    [Crossref]
  8. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [Crossref] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
    [Crossref] [PubMed]
  10. K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
    [Crossref] [PubMed]
  11. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  12. See, e.g., “Statistical Methods in Quantum Optics 2,” H. J. Carmichael, Springer (2008).
  13. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
    [Crossref]
  14. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
    [Crossref] [PubMed]
  15. S. Hughes and P. Yao, “Theory of the quantum nature of a strongly coupled single quantum dot cavity system,” Opt. Express 17, 3322 (2009).
    [Crossref] [PubMed]
  16. G. Cui and M. G. Raymer, “Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Phys. Rev. A 73, 053807 (2006).
    [Crossref]
  17. A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
    [Crossref]
  18. M. Yamaguchi, T. Asano, and S. Noda, “Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics,” Opt. Express 16, 18067 (2008).
    [Crossref] [PubMed]
  19. A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
    [Crossref]
  20. J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
    [Crossref] [PubMed]
  21. T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, “Cavity mode emission in weakly coupled quantum dot - cavity systems,” Opt. Express 17, 6643 (2009).
    [Crossref] [PubMed]
  22. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
    [Crossref]
  23. P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).
  24. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
    [Crossref] [PubMed]
  25. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
    [Crossref] [PubMed]
  26. A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, “Photoluminescence from microcavities strongly coupled to single quantum dots,” unpublished.
  27. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [Crossref]
  28. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
    [Crossref]
  29. L. Tian and H.J. Carmichael, “Incoherent excitation of the Jaynes-Cummings system,” Quantum Opt. 4, 131 (1992).
    [Crossref]
  30. T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
    [Crossref]
  31. B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
    [Crossref]
  32. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [Crossref] [PubMed]
  33. I. Wilson-Rae and A. Imamoǧlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
    [Crossref]
  34. F. Milde, A. Knorr, and S. Hughes, “Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity,” Phys. Rev. B 78, 035330 (2008).
    [Crossref]

2009 (5)

S. Hughes and P. Yao, “Theory of the quantum nature of a strongly coupled single quantum dot cavity system,” Opt. Express 17, 3322 (2009).
[Crossref] [PubMed]

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, “Cavity mode emission in weakly coupled quantum dot - cavity systems,” Opt. Express 17, 6643 (2009).
[Crossref] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

2008 (6)

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

F. Milde, A. Knorr, and S. Hughes, “Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity,” Phys. Rev. B 78, 035330 (2008).
[Crossref]

A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
[Crossref]

M. Yamaguchi, T. Asano, and S. Noda, “Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics,” Opt. Express 16, 18067 (2008).
[Crossref] [PubMed]

A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
[Crossref]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

2007 (2)

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

2006 (2)

G. Cui and M. G. Raymer, “Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Phys. Rev. A 73, 053807 (2006).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

2005 (2)

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

2004 (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

2003 (1)

A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
[Crossref] [PubMed]

2002 (3)

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

I. Wilson-Rae and A. Imamoǧlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

2001 (2)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

1999 (1)

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
[Crossref]

1997 (1)

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

1992 (1)

L. Tian and H.J. Carmichael, “Incoherent excitation of the Jaynes-Cummings system,” Quantum Opt. 4, 131 (1992).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abram, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

Amann, M.-C.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Asano, T.

Atäture, A.

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Auffeves, A.

A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
[Crossref]

Axt, V. M.

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

Badolato, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

Besga, B.

A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
[Crossref]

Beveratos, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Bichler, M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Bloch, J.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
[Crossref] [PubMed]

Böhm, G.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
[Crossref] [PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Brune, M.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
[Crossref] [PubMed]

Carmichael, H.J.

L. Tian and H.J. Carmichael, “Incoherent excitation of the Jaynes-Cummings system,” Quantum Opt. 4, 131 (1992).
[Crossref]

Cui, G.

G. Cui and M. G. Raymer, “Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Phys. Rev. A 73, 053807 (2006).
[Crossref]

del Valle, E.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Di Stefano, O.

A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, “Photoluminescence from microcavities strongly coupled to single quantum dots,” unpublished.

Dousse, A.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Finley, J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Finley, J. J.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Franeck, P.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Gauthron, K.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

Gérard, J.-M.

A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
[Crossref]

Gibbs, H. M.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

Hagley, E.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Haroche, S.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Hauke, N.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

Heindel, T.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Hendrickson, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Hennessy, K. J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Hofbauer, F.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

Höfling, S.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Hu, E.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

Hu, E. L.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Hughes, S.

S. Hughes and P. Yao, “Theory of the quantum nature of a strongly coupled single quantum dot cavity system,” Opt. Express 17, 3322 (2009).
[Crossref] [PubMed]

T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, “Cavity mode emission in weakly coupled quantum dot - cavity systems,” Opt. Express 17, 6643 (2009).
[Crossref] [PubMed]

F. Milde, A. Knorr, and S. Hughes, “Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity,” Phys. Rev. B 78, 035330 (2008).
[Crossref]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Illes, E.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Imamoglu, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

I. Wilson-Rae and A. Imamoǧlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

Imamoglu, A. A.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

Kamada, H.

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

Kaniber, M.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Khitrova, G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
[Crossref] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

Knorr, A.

F. Milde, A. Knorr, and S. Hughes, “Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity,” Phys. Rev. B 78, 035330 (2008).
[Crossref]

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
[Crossref]

Krummheuer, B.

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kuhn, T.

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

Lanco, L.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Laucht, A.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Laussy, F. P.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

Lemaitre, A.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Manin, L.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Matre, X.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

Michler, P.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

Milde, F.

F. Milde, A. Knorr, and S. Hughes, “Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity,” Phys. Rev. B 78, 035330 (2008).
[Crossref]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Moreau, E.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

MØrk, J.

A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
[Crossref]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Münch, S.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
[Crossref]

Neumann, A.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Noda, S.

Nogues, G.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Notomi, M.

T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, “Cavity mode emission in weakly coupled quantum dot - cavity systems,” Opt. Express 17, 6643 (2009).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Okamoto, H.

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Pathak, P. K.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Poizat, J-P

A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
[Crossref]

Portolan, S.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, “Photoluminescence from microcavities strongly coupled to single quantum dots,” unpublished.

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Raimond, J. M.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Raymer, M. G.

G. Cui and M. G. Raymer, “Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Phys. Rev. A 73, 053807 (2006).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Ridolfo, A.

A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, “Photoluminescence from microcavities strongly coupled to single quantum dots,” unpublished.

Robert, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Sagnes, I.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Savasta, S.

A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, “Photoluminescence from microcavities strongly coupled to single quantum dots,” unpublished.

Savona, V.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Scherer, A.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Se ogonk, G.

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Senellart, P.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Sogawa, T.

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Suffczynski, J.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

Suhr, T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
[Crossref]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Takagahara, T.

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
[Crossref]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Tarel, G.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Tawara, T.

Tejedor, C.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

Thierry-Mieg, V.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

Tian, L.

L. Tian and H.J. Carmichael, “Incoherent excitation of the Jaynes-Cummings system,” Quantum Opt. 4, 131 (1992).
[Crossref]

Villas-Boas, J. M.

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Villas-Bôas, J. M.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

Voisin, P.

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

Volz, T.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Wilson-Rae, I.

I. Wilson-Rae and A. Imamoǧlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

Winger, M.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

Worschech, L.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Wunderlich, C.

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Yamaguchi, M.

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Yao, P.

S. Hughes and P. Yao, “Theory of the quantum nature of a strongly coupled single quantum dot cavity system,” Opt. Express 17, 3322 (2009).
[Crossref] [PubMed]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

Appl. Phys. Lett. (4)

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865 (2001).
[Crossref]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoǧlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005).
[Crossref]

Nature (4)

J. P. Reithmaier, G. Se ogonk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268 (2003).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, A. Atäture, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (3)

G. Cui and M. G. Raymer, “Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime,” Phys. Rev. A 73, 053807 (2006).
[Crossref]

A. Auffeves, B. Besga, J.-M. Gérard, and J-P Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity,” Phys. Rev. A 77, 063833 (2008).
[Crossref]

A. Naesby, T. Suhr, P. T. Kristensen, and J. MØrk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008).
[Crossref]

Phys. Rev. B (6)

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED,” Phys. Rev. B (in press).

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638 (1999).
[Crossref]

B. Krummheuer, V. M. Axt, and T. Kuhn “Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots,” Phys. Rev. B 65, 195313 (2002).
[Crossref]

I. Wilson-Rae and A. Imamoǧlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

F. Milde, A. Knorr, and S. Hughes, “Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic-crystal-nanocavity,” Phys. Rev. B 78, 035330 (2008).
[Crossref]

M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77, 161303(R) (2008).
[Crossref]

Phys. Rev. Lett. (9)

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007).
[Crossref] [PubMed]

E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref] [PubMed]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities” Phys. Rev. Lett. 103, 087405 (2009).
[Crossref] [PubMed]

J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems,” Phys. Rev. Lett. 103, 027401 (2009).
[Crossref] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoǧlu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Quantum Opt. (1)

L. Tian and H.J. Carmichael, “Incoherent excitation of the Jaynes-Cummings system,” Quantum Opt. 4, 131 (1992).
[Crossref]

Science (1)

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004),
[Crossref] [PubMed]

Other (2)

See, e.g., “Statistical Methods in Quantum Optics 2,” H. J. Carmichael, Springer (2008).

A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, “Photoluminescence from microcavities strongly coupled to single quantum dots,” unpublished.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the PL measurement setup and image of the fabricated cavity by scanning electron microscope (SEM). The area enclosed by the dotted line indicates the cavity region with width modulation. (b) PL spectra with temperature scanning and (c) peak plot for exciton ‘X’ and cavity ‘C’;. The dotted lines in (c) are guides to the eye.

Fig. 2.
Fig. 2.

Temperature dependent PL spectra and spectral peak plot of X and C for two different cavities with ωx > ωc at 4 K. (a) Spectrum evolution, and (b) peak energies of sample one, and (c) and (d) show another set for a different sample. The crossover energy of the exciton and cavity, ω 0, is 1043 meV for (a) and (b), and is 1053 meV for (c) and (d).

Fig. 3.
Fig. 3.

PL spectra [(a),(c),(e)] and spectral peaks [(b),(d),(f)], as a function of cavity-exciton detuning. The pure dephasing of the exciton is allowed to double as a function of detuning, corresponding to a temperature increase. In the simulations, Px = 0.005meV, Pc = 0.01Px , Γ c = 0.14meV, Γ x = 0.3μeV, and Γ′ x = 0.07-0.14meV. The exciton-cavity coupling rate is g = 2μeV (a-b), g = 100μeV (c-d), and g = 20μeV (e-f).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d ρ d t = i h ̅ [ H s , ρ ] + ( ρ ) ,
( ρ ) = P x 2 ( 2 σ + ρ σ σ σ + ρ ρ σ σ + ) + Γ x P x 2 ( 2 σ ρ σ + σ + σ ρ ρ σ + σ )
+ P c 2 ( 2 a ρ a a a ρ ρ a a ) + Γ c + P c 2 ( 2 a ρ a a a ρ ρ a a )
+ Γ′ x 4 ( σ z ρ σ z ρ ) ,
S cav ( R , ω ) = F cav ( R ) Γ c π Re [ i a a s s D ( ω ) C ( ω ) D ( ω ) g 2 + i g a σ s s C ( ω ) D ( ω ) g 2 ] ,
S rad ( R , ω ) = F rad ( R ) Γ x π Re [ i a a s s C ( ω ) C ( ω ) D ( ω ) g 2 + i g σ + a s s C ( ω ) D ( ω ) g 2 ] ,
S tot ( R , ω ) = F cav ( R ) S cav 0 ( ω ) + F rad ( R ) S rad 0 ( ω ) ,
a a s s = g 2 Γ ( P x + P c ) + P c ( 2 P x + Γ x ) [ Γ 2 4 + ( ω c ω x ) 2 ] g 2 Γ ( 2 P x + Γ x + Γ c ) + Γ c ( 2 P x + Γ x ) [ Γ 2 4 + ( ω c ω x ) 2 ] ,
a σ s s = i g ( a a s s P x 2 P x + Γ x ) [ i ( ω c ω x ) + Γ 2 ] Γ 2 4 + ( ω c ω x ) 2 + g 2 2 P x + Γ x Γ ,
σ + σ s s = P x + i g ( a σ s s a σ + s s ) ( Γ x + P x ) + P x ,

Metrics