Abstract

This work demonstrates the feasibility of a full duplex Radio-over-fiber (RoF) link employing multi-level OFDM signal via a single-electrode Mach-Zehnder modulator and wavelength reuse for uplink utilizing a reflective semiconductor optical amplifier (RSOA). A High spectral efficiency 5-Gb/s 16-QAM OFDM signal with frequency multiplication for the RoF downstream link is demonstrated, and negligible penalty is achieved after 25-km standard single mode fiber transmission. Furthermore, wavelength reuse for a 1.25-Gb/s OOK signal via a RSOA for the upstream link is also demonstrated with a receiver penalty of less than 0.5 dB following 25-km SMF transmission.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format

Po-Tsung Shih, Chun-Ting Lin, Wen-Jr Jiang, Yu-Hung Chen, Jason (Jyehong) Chen, and Sien Chi
Opt. Express 17(22) 19501-19508 (2009)

Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion

Po-Tsung Shih, Chun-Ting Lin, Wen-Jr Jiang, Han-Sheng Huang, Jyehong Chen, Anthony Ng’oma, Michael Sauer, and Sien Chi
Opt. Express 18(12) 12748-12755 (2010)

Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression

Chun-Ting Lin, Yu-Min Lin, Jason (Jyehong) Chen, Sheng-Peng Dai, Po Tsung Shih, Peng-Chun Peng, and Sien Chi
Opt. Express 16(9) 6056-6063 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
    [Crossref]
  2. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
    [Crossref]
  3. J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  4. C. S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microw. Theory Tech. 56(1), 232–241 (2008).
    [Crossref]
  5. Z. Xu, X. Zhang, and J. Yu, “Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
    [Crossref] [PubMed]
  6. J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
    [Crossref]
  7. L. Chen, J. G. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel scheme for seamless integration of RoF with centralized lightwave OFDM WDM-PON system,” J. Lightwave Technol. 27(14), 2786–2791 (2009).
    [Crossref]
  8. Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
    [Crossref]
  9. Z. Dong, J. Lu, Y. Pi, X. Lei, L. Chen, and J. Yu, “Optical millimeter-wave signal generation and wavelength reuse for upstream connection in radio-over-fiber systems,” J. Opt. Netw. 7(8), 736–741 (2008).
    [Crossref]
  10. J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
    [Crossref]
  11. H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15(8), 4410–4418 (2007).
    [Crossref] [PubMed]
  12. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [Crossref]
  13. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [Crossref]
  14. C. T. Lin, Y. M. Lin, J. J. Chen, S. P. Dai, P. T. Shih, P. C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008).
    [Crossref] [PubMed]
  15. V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
    [Crossref]
  16. M. Kavehrad and E. Savov;“Fiber-Optic Transmission of Microwave 64-QAM Signals,” IEEE J. Sel. Areas in Commun. 8(7), 1320–1326 (1990).
    [Crossref]
  17. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
    [Crossref]

2009 (1)

2008 (5)

2007 (5)

2006 (4)

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[Crossref]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

2004 (1)

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[Crossref]

1990 (1)

M. Kavehrad and E. Savov;“Fiber-Optic Transmission of Microwave 64-QAM Signals,” IEEE J. Sel. Areas in Commun. 8(7), 1320–1326 (1990).
[Crossref]

Armstrong, J.

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Bao, H.

Bucholtz, F.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[Crossref]

Chang, G. K.

L. Chen, J. G. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel scheme for seamless integration of RoF with centralized lightwave OFDM WDM-PON system,” J. Lightwave Technol. 27(14), 2786–2791 (2009).
[Crossref]

J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chen, J. J.

Chen, L.

Chi, S.

Choi, C. S.

C. S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microw. Theory Tech. 56(1), 232–241 (2008).
[Crossref]

Dai, S. P.

Dong, Z.

Du, L. B.

Ellinas, G.

George, J.

Huang, M.

L. Chen, J. G. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel scheme for seamless integration of RoF with centralized lightwave OFDM WDM-PON system,” J. Lightwave Technol. 27(14), 2786–2791 (2009).
[Crossref]

J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Jansen, S. L.

Jia, Z.

J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Kavehrad, M.

M. Kavehrad and E. Savov;“Fiber-Optic Transmission of Microwave 64-QAM Signals,” IEEE J. Sel. Areas in Commun. 8(7), 1320–1326 (1990).
[Crossref]

Kobyakov, A.

Lane, P. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[Crossref]

Lei, X.

Lim, C.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Lin, C. T.

Lin, Y. M.

Lowery, A. J.

Lu, J.

Morita, I.

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Novak, D.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Ogawa, H.

C. S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microw. Theory Tech. 56(1), 232–241 (2008).
[Crossref]

Peng, P. C.

Pi, Y.

Qiu, J. X.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[Crossref]

Sauer, M.

Savov, E.

M. Kavehrad and E. Savov;“Fiber-Optic Transmission of Microwave 64-QAM Signals,” IEEE J. Sel. Areas in Commun. 8(7), 1320–1326 (1990).
[Crossref]

Schenk, T. C. W.

Shieh, W.

Shih, P. T.

Shoji, Y.

C. S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microw. Theory Tech. 56(1), 232–241 (2008).
[Crossref]

Shore, K. A.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[Crossref]

Takeda, N.

Tanaka, H.

Tang, J. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[Crossref]

Urick, V. J.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[Crossref]

Wang, T.

J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Waterhouse, R.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Wen, S.

Xu, Z.

Yi, L.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yu, J.

J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

Z. Dong, J. Lu, Y. Pi, X. Lei, L. Chen, and J. Yu, “Optical millimeter-wave signal generation and wavelength reuse for upstream connection in radio-over-fiber systems,” J. Opt. Netw. 7(8), 736–741 (2008).
[Crossref]

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[Crossref]

Z. Xu, X. Zhang, and J. Yu, “Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
[Crossref] [PubMed]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Yu, J. G.

Zhang, X.

IEEE J. Sel. Areas in Commun. (1)

M. Kavehrad and E. Savov;“Fiber-Optic Transmission of Microwave 64-QAM Signals,” IEEE J. Sel. Areas in Commun. 8(7), 1320–1326 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (5)

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[Crossref]

J. Yu, M. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[Crossref]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18(1), 205–207 (2006).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

C. S. Choi, Y. Shoji, and H. Ogawa, “Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks,” IEEE Trans. Microw. Theory Tech. 56(1), 232–241 (2008).
[Crossref]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Opt. Express (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Conceptual diagram of the proposed OFDM-RoF system. (i)(ii)(iii)(vi): Electrical spectra. (iv)(v)(vi)(viii): Optical spectra. (LD: laser diode, MZM: Mach-Zehnder modulator, SMF: single mode fiber, C: circulator, FBG: fiber Bragg grating, RSOA: reflective semiconductor optical amplifier, EA: electrical amplifier)
Fig. 2
Fig. 2 (a) Simulation and (b) experimental results of RF performance fading versus SMF transmission distance.
Fig. 3
Fig. 3 Experimental setup of the proposed system. (BERT: bit error rate test, BPF: band-pass filter)
Fig. 4
Fig. 4 Block diagrams of OFDM transmitter (a) and receiver (b). (IFFT: inverse fast Fourier transform, DAC: digital-to-analog converter, PD: photodiode, ADC: analog-to-digital converter, FFT: fast Fourier transform)
Fig. 5
Fig. 5 Experiment result of RF performance fading versus SMF transmission length.
Fig. 6
Fig. 6 OPR versus measured receiver sensitivity at normalized optical power.
Fig. 7
Fig. 7 Constellations of 5-Gb/s 16-QAM OFDM signals. The optical power is normalized to −15dBm before detection. (a)(b)(c): OFDM signals with LSB2 filtered out. (d)(e)(f): OFDM signals with OFDM-modulated LSB1 filtered out.
Fig. 8
Fig. 8 BER curves of 5-Gb/s 16-QAM OFDM downlink signals.
Fig. 9
Fig. 9 BER curves of 1.25-Gb/s OOK uplink signals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OPR= P sub / P OFDM

Metrics