Abstract

A new method for sample fiber Bragg grating fabrication by use of both femtosecond laser and CO2 laser has been proposed and demonstrated. Such a method exhibits the advantages of high fabrication flexibility, and good thermal stability. The sampling period and duty cycle can be easily varied by changing the CO2 laser beam scanning pattern during operation. The gratings produced have potential applications in optical communications, fiber lasers, and optical fiber sensors.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability

Congzhe Zhang, Yuanhong Yang, Chao Wang, Changrui Liao, and Yiping Wang
Opt. Express 24(4) 3981-3988 (2016)

Sampled Bragg gratings formed in helically twisted fibers and their potential application for the simultaneous measurement of mechanical torsion and temperature

Jie Li, Gaoyang Chen, Peng Ma, Li-Peng Sun, Chuang Wu, and Bai-Ou Guan
Opt. Express 26(10) 12903-12911 (2018)

Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement

Xuewen Shu, Bashir A. L. Gwandu, Yu Liu, Lin Zhang, and Ian Bennion
Opt. Lett. 26(11) 774-776 (2001)

References

  • View by:
  • |
  • |
  • |

  1. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
    [Crossref]
  2. L. Hojoon and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photon. Technol. Lett. 16(2), 635–637 (2004).
    [Crossref]
  3. Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1026–1028 (2004).
    [Crossref]
  4. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
    [Crossref]
  5. G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
    [Crossref]
  6. O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
    [Crossref]
  7. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [Crossref]
  8. B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
    [Crossref]
  9. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
    [Crossref]
  10. H. Chi, X.-M. Tao, D.-X. Yang, and K.-S. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett. 26(24), 1949–1951 (2001).
    [Crossref]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  12. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
    [Crossref]
  13. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
    [Crossref]
  14. H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
    [Crossref]
  15. G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
    [Crossref]
  16. A. L. C. Triques, C. L. Barbosa, and R. M. Cazo, “J. L. de, S. Ferreira, R. C. Rabelo, L. C. G. Valente, A. Martins, and B. Braga, “Thermal treatment of fiber Bragg gratings recorded using high power lasers,” J. Microwaves and Optoelectronics 3, 127–134 (2004).
  17. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [Crossref] [PubMed]
  18. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [Crossref] [PubMed]
  19. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4-6), 324–328 (1998).
    [Crossref]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  21. X. Y. He, Y. L. Yu, D. X. Huang, R. K. Zhang, W. Liu, and S. Jiang, “Analysis and applications of reflection-spectrum envelopes for sampled gratings,” J. Lightwave Technol. 26(6), 720–728 (2008).
    [Crossref]

2008 (2)

2006 (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

2004 (3)

L. Hojoon and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photon. Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

A. L. C. Triques, C. L. Barbosa, and R. M. Cazo, “J. L. de, S. Ferreira, R. C. Rabelo, L. C. G. Valente, A. Martins, and B. Braga, “Thermal treatment of fiber Bragg gratings recorded using high power lasers,” J. Microwaves and Optoelectronics 3, 127–134 (2004).

2003 (1)

2002 (2)

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

2001 (2)

2000 (2)

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4-6), 324–328 (1998).
[Crossref]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

1996 (2)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

1995 (2)

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Agrawal, G. P.

L. Hojoon and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photon. Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

Asseh, A.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Bai-Ou, G.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Barbosa, C. L.

A. L. C. Triques, C. L. Barbosa, and R. M. Cazo, “J. L. de, S. Ferreira, R. C. Rabelo, L. C. G. Valente, A. Martins, and B. Braga, “Thermal treatment of fiber Bragg gratings recorded using high power lasers,” J. Microwaves and Optoelectronics 3, 127–134 (2004).

Bennion, I.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Cazo, R. M.

A. L. C. Triques, C. L. Barbosa, and R. M. Cazo, “J. L. de, S. Ferreira, R. C. Rabelo, L. C. G. Valente, A. Martins, and B. Braga, “Thermal treatment of fiber Bragg gratings recorded using high power lasers,” J. Microwaves and Optoelectronics 3, 127–134 (2004).

Chen, K.-S.

Chi, H.

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Davis, K. M.

Dhosi, G.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Ding, H.

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Frazão, O.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Gallagher, M. D.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Gilbert, S. L.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Grattan, K. T. V.

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4-6), 324–328 (1998).
[Crossref]

Grobnic, D.

Gwandu, B. A. L.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref]

He, X. Y.

Henderson, G.

Hirao, K.

Hojoon, L.

L. Hojoon and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photon. Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

Huang, D. X.

Hwa-Yaw, T.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Jiang, S.

Jianliang, Y.

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Jin, W.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Krug, P. A.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Li, Y.

Liao, C. R.

Lidgard, A.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Liu, W.

Liu, Y.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref]

Lu, P.

Marques, P. V. S.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Mihailov, S. J.

Miura, K.

Nam Quoc, N.

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Ouellette, F.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Pannell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4-6), 324–328 (1998).
[Crossref]

Patrick, H.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

Peng, G.-D.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

Rao, Y.-J.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

Rego, G.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Romero, R.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Sahlgren, B. E.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Salgado, H. M.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Sandgren, S.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Santos, J. L.

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

Shu, X.

Shu, X. W.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

Smelser, C. W.

Stephens, T.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Storoy, H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Stubbe, R. A. H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Sugimoto, N.

Sun, T.

Swee Chuan, T.

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Tao, X.-M.

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Triques, A. L. C.

A. L. C. Triques, C. L. Barbosa, and R. M. Cazo, “J. L. de, S. Ferreira, R. C. Rabelo, L. C. G. Valente, A. Martins, and B. Braga, “Thermal treatment of fiber Bragg gratings recorded using high power lasers,” J. Microwaves and Optoelectronics 3, 127–134 (2004).

Unruh, J.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Walker, R. B.

Wang, D. N.

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[Crossref] [PubMed]

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

Wang, Y.-P.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

Xiao-Ming, T.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

Xiao-Yi, D.

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Yang, D.-X.

Yu, Y. L.

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4-6), 324–328 (1998).
[Crossref]

Zhang, L.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref]

Zhang, R. K.

Zhang, W.

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

Appl. Phys. Lett. (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105–151103 (2006).
[Crossref]

Electron. Lett. (3)

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

O. Frazão, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38(14), 693–695 (2002).
[Crossref]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (5)

L. Hojoon and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photon. Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

Y. Jianliang, T. Swee Chuan, and N. Nam Quoc, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

G. Bai-Ou, T. Hwa-Yaw, T. Xiao-Ming, and D. Xiao-Yi, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

J. Appl. Phys. (1)

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, “Annealing of Bragg gratings in hydrogen-loaded optical fiber,” J. Appl. Phys. 78(5), 2940–2945 (1995).
[Crossref]

J. Lightwave Technol. (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

X. Y. He, Y. L. Yu, D. X. Huang, R. K. Zhang, W. Liu, and S. Jiang, “Analysis and applications of reflection-spectrum envelopes for sampled gratings,” J. Lightwave Technol. 26(6), 720–728 (2008).
[Crossref]

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[Crossref]

J. Microwaves and Optoelectronics (1)

A. L. C. Triques, C. L. Barbosa, and R. M. Cazo, “J. L. de, S. Ferreira, R. C. Rabelo, L. C. G. Valente, A. Martins, and B. Braga, “Thermal treatment of fiber Bragg gratings recorded using high power lasers,” J. Microwaves and Optoelectronics 3, 127–134 (2004).

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4-6), 324–328 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Sens. Actuators A Phys. (1)

B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators A Phys. 96(2-3), 133–139 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental arrangement for SFBG fabrication by CO2 laser scanning. BS denotes the broadband light source. The green dotted lines indicate the scanning route of the CO2 laser beam and the red line with block dots indicates the FBG.
Fig. 2
Fig. 2 (a) Microscope image of the SFBG fabricated by femtomsecond laser and CO2 laser. (b) The amplified image of the part circled in (a).
Fig. 3
Fig. 3 (a) Effective refractive index profile of the FBG. (b) CO2 laser induced periodic modulation. (c) Effective refractive index profile of the SFBG.
Fig. 4
Fig. 4 Reflection spectrum of the SFBG corresponding to one laser scanning cycle. The insert picture shows the original reflection spectrum of FBG fabricated by femtosecond laser.
Fig. 5
Fig. 5 Reflection spectra of the SFBG corresponding to 1, 3, and 5 laser scanning cycles.
Fig. 6
Fig. 6 Experimental results for the sampling period of (a) 450 µm, (b) 400 µm, and (c) 300 µm. Simulation results for the sampling period of (d) 450 µm, (e) 400 µm, and (f) 300 µm.
Fig. 7
Fig. 7 (a) Experimental results of the SFBG reflection spectra for different duty ratios: 0.88 (one scanning cycle), 0.65 (four scanning cycles) and 0.425 (seven scanning cycles). (b) The corresponding simulation results.
Fig. 8
Fig. 8 SFBG peak intensity versus temperature. The inset shows the result of thermal stability test at 650°C for six hours.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n e f f ( z ) = n 0. e f f ( z ) + δ ¯ n ( z ) e f f [ f ( z ) ( i = δ ( z i Z 0 ) g ( z ) ) ] { 1 + υ cos ( 2 π Λ z ) }
f ( z ) = { 1 , 0 , Z g 2 z Z g 2 o t h e r w i s e
g ( z ) = { exp ( 4 ln 2 z 2 W 2 ) , 0 , L 0 2 z L 0 2 o t h e r w i s e
F = [ e j β L 0 0 e j β L ]
T p , n = [ cosh ( γ Z g ) j σ γ sinh ( γ Δ z ) j κ γ sinh ( γ Δ z ) j κ γ sinh ( γ Δ z ) cosh ( γ Z g ) + j σ γ sinh ( Δ z ) ]
T p = T p , m T p , m 1 T p , 2 T p , 0
T = T q F T q 1 ........ T 2 F T 1
D R = 1 30 μ m × ( N 1 ) + 50 μ m Z 0

Metrics