Abstract

Light emission at 1.54 μm from an Er-doped amorphous silicon nitride layer coupled to photonic crystal resonators at cryogenic and room temperatures and under varying optical pump powers has been studied. The results demonstrate that small mode volume, high quality factor resonators enhance Er absorption and emission rates at the cavity resonance. Time resolved measurements give 11- to 17-fold Purcell enhancement of spontaneous emission at cryogenic temperatures, and 2.4-fold enhancement at room temperature. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and partial inversion of the Er ions cryogenic temperatures. We estimate that 31% of Er ions are excited at the highest pump power.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of Transparency of Erbium-doped Silicon nitride in photonic crystal nanobeam cavities

Yiyang Gong, Maria Makarova, Selçuk Yerci, Rui Li, Martin J. Stevens, Burm Baek, Sae Woo Nam, Luca Dal Negro, and Jelena Vučković
Opt. Express 18(13) 13863-13873 (2010)

Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities

R. Lo Savio, M. Miritello, A. Shakoor, P. Cardile, K. Welna, L. C. Andreani, D. Gerace, T. F. Krauss, L. O’Faolain, F. Priolo, and M. Galli
Opt. Express 21(8) 10278-10288 (2013)

Enhanced Light Emission from Erbium Doped Silicon Nitride in Plasmonic Metal-Insulator-Metal Structures

Yiyang Gong, Selçuk Yerci, Rui Li, Luca Dal Negro, and Jelena Vučković
Opt. Express 17(23) 20642-20650 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, “A review of the various approaches to a silicon laser,” Proc. SPIE 4997, 206 (2003).
    [Crossref]
  2. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
    [Crossref]
  3. R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
    [Crossref]
  4. W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
    [Crossref]
  5. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
    [Crossref]
  6. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
    [Crossref] [PubMed]
  8. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
    [Crossref]
  9. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
    [Crossref]
  10. Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
    [Crossref] [PubMed]
  11. Dirk Englund, Ilya Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express, 13, 5961 (2005).
    [Crossref]
  12. R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
    [Crossref]
  13. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).
  14. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, pp. 230–253. John Wiley & Sons: New York, 1994.
  15. R. H. Hadfield, M. J. Stevens, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846 (2005).
    [Crossref] [PubMed]
  16. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
    [Crossref]
  17. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
    [Crossref] [PubMed]
  18. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
    [Crossref]
  19. S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
    [Crossref]
  20. M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).
  21. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Series in Chemical Physics, Vol. 81, 2005).
    [Crossref]
  22. B. Henderson and G. F. Imbusch. Optical Spectoscopy of Inorganic Solids. Oxford University Press: New York, 1989.
  23. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
    [Crossref]
  24. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203–267, Academic Press, 1994.
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, pp. 226–227. John Wiley & Sons: New York, 1995.

2009 (3)

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[Crossref]

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

2008 (5)

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[Crossref]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

2006 (1)

2005 (2)

2003 (2)

Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref] [PubMed]

L. Pavesi, “A review of the various approaches to a silicon laser,” Proc. SPIE 4997, 206 (2003).
[Crossref]

2002 (1)

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

1991 (1)

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akahane, Y.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref] [PubMed]

Anant, V.

Asano, T.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref] [PubMed]

Baek, B.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Basu, S. N.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[Crossref]

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Series in Chemical Physics, Vol. 81, 2005).
[Crossref]

Berggren, K. K.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
[Crossref] [PubMed]

Buuren, T. van

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

Chen, P.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Cheng, B. W.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Cheng, S-L.

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, pp. 226–227. John Wiley & Sons: New York, 1995.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, pp. 226–227. John Wiley & Sons: New York, 1995.

Dapkus, P.D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Dauler, E. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
[Crossref] [PubMed]

Desurvire, E.

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, pp. 230–253. John Wiley & Sons: New York, 1994.

Ding, W. C.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Dorenbos, S. N.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Dorenbos, S.N.

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Eaglesham, D. J.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

Englund, Dirk

Dirk Englund, Ilya Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express, 13, 5961 (2005).
[Crossref]

Fushman, Ilya

Dirk Englund, Ilya Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express, 13, 5961 (2005).
[Crossref]

Gogna, P.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Gol’tsman, G.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Gol’tsman, G. N.

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
[Crossref] [PubMed]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Gong, Y.

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Gruber, S. G.

Hadfield, R. H.

R. H. Hadfield, M. J. Stevens, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846 (2005).
[Crossref] [PubMed]

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Hamilton, S. A.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Henderson, B.

B. Henderson and G. F. Imbusch. Optical Spectoscopy of Inorganic Solids. Oxford University Press: New York, 1989.

Hu, D.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Imbusch, G. F.

B. Henderson and G. F. Imbusch. Optical Spectoscopy of Inorganic Solids. Oxford University Press: New York, 1989.

Jacobson, D. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

Kerman, A. J.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Kimble, H. J.

H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203–267, Academic Press, 1994.

Kistler, R. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

Klapwijk, T. M.

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Kucheyev, S. O.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Li, R.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[Crossref]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[Crossref]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Loncar, M.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Makarova, M.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Miller, A. J.

Mirin, R. P.

Nam, S.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Nam, S. W.

Natarajan, C. M.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Negro, L. Dal

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[Crossref]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[Crossref]

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Nishi, Y.

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Noda, S.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

O’Connor, J. A.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Pavesi, L.

L. Pavesi, “A review of the various approaches to a silicon laser,” Proc. SPIE 4997, 206 (2003).
[Crossref]

Perinetti, U.

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

Poate, J. M.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

Polman, A.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

Pottapenjara, V. K.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qiu, Y.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Reiger, E. M.

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

Robinson, B. S.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

Rosfjord, K. M.

Scherer, A.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Schneck, J. R.

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

Schwall, R. E.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Sih, V.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Song, B-S.

Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref] [PubMed]

Stevens, M. J.

Tanner, M. T.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Voronov, B.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Voronov, B. M.

Vuckovic, J.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

Dirk Englund, Ilya Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express, 13, 5961 (2005).
[Crossref]

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Wang, Q. M.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Warburton, R. J.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Warga, J.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[Crossref]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Yang, J. K. W.

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
[Crossref] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Yerci, S.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[Crossref]

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

Yoshie, T.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Yu, J. Z.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Zheng, J.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Ziegler, L. D.

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

Zijlstra, T.

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Zwiller, V.

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

Appl. Phys. Lett. (8)

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
[Crossref]

R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[Crossref]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[Crossref]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučković, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[Crossref]

R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[Crossref]

S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

J. Appl. Phys. (1)

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
[Crossref]

J. Mod. Opt. (1)

E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364–373 (2009).
[Crossref]

J. Phys. D: Appl. (1)

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Express, (1)

Dirk Englund, Ilya Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express, 13, 5961 (2005).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Proc. SPIE (1)

L. Pavesi, “A review of the various approaches to a silicon laser,” Proc. SPIE 4997, 206 (2003).
[Crossref]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Other (7)

M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, pp. 230–253. John Wiley & Sons: New York, 1994.

M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Series in Chemical Physics, Vol. 81, 2005).
[Crossref]

B. Henderson and G. F. Imbusch. Optical Spectoscopy of Inorganic Solids. Oxford University Press: New York, 1989.

H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203–267, Academic Press, 1994.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, pp. 226–227. John Wiley & Sons: New York, 1995.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM picture of the fabricated PC cavity. The nearest end holes of the PC are shifted out by 0.20a, and the second nearest end holes are shifted out by 0.10a. The marker denotes 600 nm. (b) Electric field pattern (∣E2) of the PC cavity mode. (c) SEM picture of the fabricated micro-ring structure with radius of 10 μm and the out-coupling waveguide and grating. Marker represents 4 μm. (d) Electric field pattern (∣E2) of azimuthal number m = 60 micro-ring mode.

Fig. 2.
Fig. 2.

(a) Normalized spectra of PC cavities at temperatures of 6 K (magenta, blue) and 90 K (red). For 6 K the spectra taken at low pump power of 0.11 mW (blue) and high pump power of 30.3 mW (magenta) are shown, demonstrating line-width narrowing with increasing pump power. The solid lines are Lorentzian fits used to determine cavity Qs (9,000 at 0.11 mW-pump at 6K, 13,300 at 30.3 mW at 6K, and 16,000 at 90K). (b) Micro-ring resonances at 6K (black), and spectra of Er emission from unpatterned film at room (red) and cryogenic (blue) temperatures.

Fig. 3.
Fig. 3.

Temperature dependence of (a) cavity Q-factor and (b) cavity resonance wavelength measured at 0.050 mW pump power and 30mW pump power for the PC cavity, and also for a micro-ring cavity mode at 35mW.

Fig. 4.
Fig. 4.

Pump power dependence of (a) the integrated cavity intensity and (b) the cavity Q for PC and micro-ring cavity modes at different temperatures.

Fig. 5.
Fig. 5.

(a) Qs for a number of PC cavities at low pump power as temperature is increased from 6 K to 290 K. Different colors show the wavelengths and Qs of individual cavities with varying temperature. The points along each line are taken at the same intermediate temperatures as in Fig. 3(a) for the PC cavity. (b) Change in Q as the pump power is switched from 0.050 mW to 30 mW for a number of PC cavities measured at temperatures from 6 K to 290 K. (c) Q for micro-ring cavities as temperature is increased from 6 K to 290 K. The points along each line are taken at the same intermediate temperatures as in Fig. 3(a) for the micro-ring cavity.

Fig. 6.
Fig. 6.

(a) Time-resolved PL decay at room temperature from a PC cavity and unpatterned film. (b) Wavelength scans with SNSPD across cavity spectra measured at 300 K and 3.1 K. (c) PL decay at 3.1K from PC cavity off resonance, unpatterned film, and PC cavity resonance. (d) Time constants from bi-exponential fits to PC cavity resonance decays taken with pump powers varying from 2 mW to 30 mW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 τ = 1 τ r + 1 τ nr .
1 τ cav = F p τ r + 1 τ nr .
ω 0 Q obs = ω 0 Q cav + γ a ( T ) .
ω 0 Q obs = ω 0 Q cav + γ a ( T ) ( 1 2 Er * Er ) ,

Metrics