Abstract

When a light wave hits a metal wedge structure, the metal surfaces respond to the incident light by generating both free-space and surface-bound waves. Here we present a physical model that elucidates electromagnetic interactions of an incoming planar wave with a simple semi-infinite 90° metal wedge. We show that a metal wedge structure possesses an intrinsic capability of directing the incident power around the corner into the forward direction. Interplay of the boundary diffraction wave and the incident and reflection waves in the near field region of a metal corner is found to form a basis of the funneling phenomena that are commonly observed in metal nanoslit structures. Theory and experiment reveal that the incident wave propagating parallel to the sidewall destructively interferes with the boundary diffraction wave forming a depleted-energy-flow region along the glancing angle direction. A physical understanding of various electromagnetic phenomena associated with a metal wedge structure confirms rich potential of the simple structure as an elemental building block of complex metal nanostructures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  2. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, Hoboken, 1999).
  3. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  4. A. Sommerfeld, Optics (Academic Press, New York, 1954).
  5. A. Rubinowicz, "Thomas Young and the theory of diffraction," Nature 180(4578), 160-162 (1957).
    [CrossRef]
  6. J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Am. 52(2), 116-130 (1962).
    [CrossRef] [PubMed]
  7. Y. Z. Umul, "Alternative interpretation of the edge-diffraction phenomenon," J. Opt. Soc. Am. A 25(3), 582-587 (2008).
    [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
    [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003).
    [CrossRef] [PubMed]
  10. P. Lalanne, and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2(8), 551-556 (2006).
    [CrossRef]
  11. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
    [CrossRef]
  12. E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
    [CrossRef] [PubMed]
  13. S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
    [CrossRef]
  14. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
    [CrossRef]
  15. E. D. Palik, ed., Optical Constants of Solids (Academic Press, New York, 1998).
  16. A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, 2005).
  17. P. Ya. Ufimtsev, Fundamentals of the physical theory of diffraction (Wiley-IEEE, New Jersey, 2007).
    [CrossRef]
  18. Y. Z. Umul, "Modified theory of physical optics approach to wedge diffraction problems," Opt. Express 13(1), 216-224 (2005).
    [CrossRef] [PubMed]
  19. E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2002).
  20. L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006).
    [CrossRef] [PubMed]
  21. Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
    [CrossRef]
  22. H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
    [CrossRef]
  23. Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
    [CrossRef]
  24. J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974).
    [CrossRef]
  25. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
    [CrossRef] [PubMed]
  26. J. Wuenschell, and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14(21), 10000-10013 (2006).
    [CrossRef] [PubMed]
  27. J. Wuenschell, and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Trans. Nanotechnol. 7(2), 229-236 (2008).
    [CrossRef]
  28. F. J. García de Abajo, "Colloquium: light scattering by particle and hole arrays," Rev. Mod. Phys. 79(4), 1267-1290 (2007).
    [CrossRef]
  29. J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009).
    [CrossRef] [PubMed]
  30. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86(24), 5601-5603 (2001).
    [CrossRef] [PubMed]
  31. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
    [CrossRef] [PubMed]
  32. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
    [CrossRef]

2009 (3)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

2008 (5)

J. Wuenschell, and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Trans. Nanotechnol. 7(2), 229-236 (2008).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
[CrossRef]

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
[CrossRef]

Y. Z. Umul, "Alternative interpretation of the edge-diffraction phenomenon," J. Opt. Soc. Am. A 25(3), 582-587 (2008).
[CrossRef]

2007 (2)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

F. J. García de Abajo, "Colloquium: light scattering by particle and hole arrays," Rev. Mod. Phys. 79(4), 1267-1290 (2007).
[CrossRef]

2006 (3)

J. Wuenschell, and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14(21), 10000-10013 (2006).
[CrossRef] [PubMed]

P. Lalanne, and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2(8), 551-556 (2006).
[CrossRef]

L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. Z. Umul, "Modified theory of physical optics approach to wedge diffraction problems," Opt. Express 13(1), 216-224 (2005).
[CrossRef] [PubMed]

2004 (3)

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
[CrossRef] [PubMed]

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

2001 (1)

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86(24), 5601-5603 (2001).
[CrossRef] [PubMed]

1986 (1)

E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
[CrossRef] [PubMed]

1974 (1)

J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974).
[CrossRef]

1962 (1)

J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Am. 52(2), 116-130 (1962).
[CrossRef] [PubMed]

1957 (1)

A. Rubinowicz, "Thomas Young and the theory of diffraction," Nature 180(4578), 160-162 (1957).
[CrossRef]

Ahn, K. J.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[CrossRef] [PubMed]

Chen, L.

L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006).
[CrossRef] [PubMed]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Csapó, L.

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, "Colloquium: light scattering by particle and hole arrays," Rev. Mod. Phys. 79(4), 1267-1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[CrossRef] [PubMed]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Harootunian, A.

E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2(8), 551-556 (2006).
[CrossRef]

Isaacson, M.

E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
[CrossRef] [PubMed]

Janssens, K.

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Jung, Y. S.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
[CrossRef]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
[CrossRef]

Kang, J. H.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

Keller, J. B.

J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Am. 52(2), 116-130 (1962).
[CrossRef] [PubMed]

Kihm, H. W.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

Kim, D. S.

J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

Kim, H. K.

J. Wuenschell, and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Trans. Nanotechnol. 7(2), 229-236 (2008).
[CrossRef]

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
[CrossRef]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
[CrossRef]

J. Wuenschell, and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14(21), 10000-10013 (2006).
[CrossRef] [PubMed]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Kukhlevsky, S. V.

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Kyoung, J. S.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Lalanne, P.

P. Lalanne, and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2(8), 551-556 (2006).
[CrossRef]

Lee, K. G.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

Lewis, A.

E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

Lipson, M.

L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006).
[CrossRef] [PubMed]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Loudon, R.

J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974).
[CrossRef]

Mansuripur, M.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[CrossRef] [PubMed]

Mechler, M.

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Moloney, J. V.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
[CrossRef] [PubMed]

Nkoma, J.

J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974).
[CrossRef]

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Robinson, J. T.

L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006).
[CrossRef] [PubMed]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Rubinowicz, A.

A. Rubinowicz, "Thomas Young and the theory of diffraction," Nature 180(4578), 160-162 (1957).
[CrossRef]

Samek, O.

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Schmidt, T.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
[CrossRef]

Seo, M. A.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Takakura, Y.

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86(24), 5601-5603 (2001).
[CrossRef] [PubMed]

Tilly, D. R.

J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974).
[CrossRef]

Umul, Y. Z.

Y. Z. Umul, "Alternative interpretation of the edge-diffraction phenomenon," J. Opt. Soc. Am. A 25(3), 582-587 (2008).
[CrossRef]

Y. Z. Umul, "Modified theory of physical optics approach to wedge diffraction problems," Opt. Express 13(1), 216-224 (2005).
[CrossRef] [PubMed]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Wuenschell, J.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
[CrossRef]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
[CrossRef]

J. Wuenschell, and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Trans. Nanotechnol. 7(2), 229-236 (2008).
[CrossRef]

J. Wuenschell, and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14(21), 10000-10013 (2006).
[CrossRef] [PubMed]

Xi, Y.

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
[CrossRef]

Xie, Y.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
[CrossRef] [PubMed]

Zakharian, A. R.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008).
[CrossRef]

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

J. Wuenschell, and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Trans. Nanotechnol. 7(2), 229-236 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Am. 52(2), 116-130 (1962).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Y. Z. Umul, "Alternative interpretation of the edge-diffraction phenomenon," J. Opt. Soc. Am. A 25(3), 582-587 (2008).
[CrossRef]

J. Phys. C Solid State Phys. (1)

J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974).
[CrossRef]

Nat. Photonics (1)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009).
[CrossRef]

Nat. Phys. (2)

P. Lalanne, and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2(8), 551-556 (2006).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007).
[CrossRef]

Nature (2)

A. Rubinowicz, "Thomas Young and the theory of diffraction," Nature 180(4578), 160-162 (1957).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
[CrossRef] [PubMed]

J. Wuenschell, and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14(21), 10000-10013 (2006).
[CrossRef] [PubMed]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008).
[CrossRef]

Y. Z. Umul, "Modified theory of physical optics approach to wedge diffraction problems," Opt. Express 13(1), 216-224 (2005).
[CrossRef] [PubMed]

L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86(24), 5601-5603 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, "Colloquium: light scattering by particle and hole arrays," Rev. Mod. Phys. 79(4), 1267-1290 (2007).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002).
[CrossRef] [PubMed]

Other (8)

M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, Hoboken, 1999).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).

A. Sommerfeld, Optics (Academic Press, New York, 1954).

E. D. Palik, ed., Optical Constants of Solids (Academic Press, New York, 1998).

A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, 2005).

P. Ya. Ufimtsev, Fundamentals of the physical theory of diffraction (Wiley-IEEE, New Jersey, 2007).
[CrossRef]

E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Electromagnetic interaction of a metal wedge. (a) Schematic illustration of free-space and surface-bound waves generated by a metal wedge for a normally incident planar wave: (from the bottom layer) incident; reflection; boundary diffraction; reflection of boundary diffraction; and surface plasmon waves. (b) to (g), Snapshot images of field distributions around a Ag corner calculated by FDTD for a 650 nm wavelength, magnetic polarized incident light: Hz,total (b); Ex,total (c); Ey (d); Hz,total - Hz,in (e); Hz,total - Hz,in - Hz,refl (f); Ex,total - Ex,in - Ex,refl (g).

Fig. 2.
Fig. 2.

Anti-symmetric phase distribution of magnetic field (Hz ) of a boundary diffraction wave around a Ag wedge. (a) Hz field profiles scanned along the y-direction at x = 0- (blue curve) or at x = 0 + (red curve). Hz field of planar reflection (x ≥ 0, green curve) is also shown for comparison with boundary diffraction components in their phase and amplitude relations. (b) Snapshot image of Hz field distribution of a boundary diffraction wave. Note the opposite phase distribution across x = 0. A magnetic polarized light (650 nm wavelength) is incident from the bottom side of simulation window.

Fig. 3.
Fig. 3.

A model for boundary diffraction. (a) Hz,total field distribution calculated by FDTD for a half-plane Hz source placed on the bottom face of a perfect electric conductor wedge. (b) Hz,total . (c) Ey . (d) (Hz,total - Hz,pl ) field distributions calculated for a half-plane Hz source placed on the border of the 2nd and 3rd quadrants (x < 0, y = 0) in free space.

Fig. 4.
Fig. 4.

(a) |Hz | distributions scanned along the x-direction at y = -3λ (λ = 650 nm): for a half-plane Hz source placed on the bottom face of a perfect electric conductor wedge (red); for a perfect electric conductor half-plane sheet placed at x < 0 and y = 0 (blue) with a magnetic polarized light normally incident to the PEC sheet. These FDTD calculated simulation results (red and blue) are compared with the analytical result (green) (after adjusting phases) calculated from the Sommerfeld half-plane problem, which concerns the same geometry as the PEC sheet case (blue) [1]. A good agreement is observed among the three results (especially between blue and green curves). (b) Snapshot image of Hz distribution for the case of a half-plane Hz source placed on the bottom face of a perfect electric conductor corner.

Fig. 5.
Fig. 5.

Schematics of boundary diffraction wavefront generation by a propagating semi-infinite planar Hz source in free space and its interaction with the vertical sidewall of a metal wedge. (a) A half-plane Hz source placed in free space (an array of brown dots with crosses inside: placed on the border of the 2nd and 3rd quadrants, x < 0, y = 0) generates anitiphase non-planar boundary diffraction wavefronts (red and blue solid curves) besides the planar wavefronts (brown solid lines). (b) When a metal wedge is introduced in the 1st quadrant (green block: x > 0, y > 0), the non-planar diffraction wave components in the 1st quadrant (red dotted curves) reflect back to the 2nd quadrant (red solid curves) and are superposed to the diffraction components propagating in that region (blue solid curves). The ‘r’ indicates the reflection coefficient at the vertical sidewall. The red arrows denote the propagation direction of wavefronts.

Fig. 6.
Fig. 6.

Snapshot images of magnetic field (Hz ) distributions around a metal wedge. Different dielectric constant values are assumed for FDTD calculation: (a) εM = -5 + i1.15; (b) εM = -1.5 + i1.15. A magnetic polarized light (650 nm wavelength) is normally incident from the bottom side of the simulation window. Presence of field-depletion region is clearly observed near the vertical sidewall of metal, although hindered by coexistence of surface plasmon fields.

Fig. 7.
Fig. 7.

Energy flow distributions calculated by FDTD. (a) |<S>| for a perfect electric conductor wedge. (b) |<S>| for a Ag corner. (c) |<Sx >| (10 times magnified) for a Ag corner. (d) |<Sy >| for a Ag corner. (e) |<Sx >| scanned along the negative y-direction at x = 0. (f) |<Sy >| scanned along the negative x-direction at y = 0.

Fig. 8.
Fig. 8.

Close-up view of energy flow around a metal wedge. (a) <Sx > (10 times magnified) around a Ag corner. (b) <Sy > around a Ag corner. (c), (d), Energy flow vectors: distribution of Poyning vectors around a Ag corner (c) or a PEC corner (d). Note that for both Ag and PEC corner cases the energy flow in the near field region of front surface (x < ~60 nm; y = 0 to 20 nm) is directed left, being funneled around the corner. (e), (f), Poynting vector <Sx >, and its components <Sx > diff and <Sx > cross around a PEC corner: scanned along the x-direction at y = 0 (e) or along the y-direction at x = 0 (f). Amplitudes (g) and phases (h) of Ey,diff , Hz,diff and Hz,pl fields scanned along the x-direction at y = 0.

Fig. 9.
Fig. 9.

Experimentally measured energy flow distribution around a Ag wedge. (a) Schematic of scanning probe measurement. (b) Optical micrograph of a scanning probe aligned to the edge of a Ag wedge. (c) Color map of measured energy flow distribution (primarily <Sy > component). (d) Measured scan profiles. The coordinate (0,0) corresponds to the corner point. Note the depleted-energy-flow region [dark blue in (c)] along the glancing angle direction near the sidewall (x = 0). (e), (f), (g), Energy flow distributions scanned along the x-direction in the 2nd quadrant: comparison between the experimentally measured data (blue) and a FDTD simulation result calculated at 633 nm wavelength (red). The coordinate (x = 0, y = 0) corresponds to the corner point.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = ε M cos θ i ε M sin 2 θ i ε M cos θ i + ε M sin 2 θ i .
r ε M cos θ i ε M ε M cos θ i + ε M = ε M cos θ i 1 ε M cos θ i + 1 .
S x = 1 2 Re ( E y × H z * ) = 1 2 Re ( E y , diff × H z , diff * ) + 1 2 Re ( E y , diff × H z , pl * ) S x diff + S x cross

Metrics