Abstract

Dark field microspectroscopy is the primary method for the study of plasmon modes of individual metallic nanostructures. Light from a plasmonic nanostructure typically scatters with a strong angular and modal dependence, resulting in significant variations in the observed spectral response depending on excitation and collection angle and polarization of incident light. Here we examine how spectrally dependent radiation patterns arising from an individual plasmonic nanoparticle, positioned on a dielectric substrate, affect the detection of its plasmon modes. Careful consideration of excitation and collection geometry is of critical concern in quantitative studies of the optical response of these nanoparticle systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  2. L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006).
  3. U. Kreibig, and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).
  4. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009).
    [CrossRef]
  5. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
    [CrossRef] [PubMed]
  6. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
    [CrossRef]
  7. S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
    [CrossRef]
  8. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
    [CrossRef] [PubMed]
  9. C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
    [CrossRef]
  10. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  11. J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
    [CrossRef]
  12. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [CrossRef]
  13. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
    [CrossRef] [PubMed]
  14. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
    [CrossRef]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
    [CrossRef] [PubMed]
  16. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
    [CrossRef] [PubMed]
  17. R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178(1), 195–205 (1991).
    [CrossRef]
  18. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
    [CrossRef]
  19. C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
    [CrossRef]
  20. F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006).
    [CrossRef] [PubMed]
  21. E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006).
    [CrossRef]
  22. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
    [CrossRef]
  23. B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
    [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  25. J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
    [CrossRef]
  26. J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941).
  27. R. Juškaitis, “Characterizing high numerical aperture microscope objective lenses,” in Optical Imaging and Microscopy, 2 ed., P. Török and F.-J. Kao, eds. (Springer, Berlin, 2007), pp. 21–43.
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]

2009 (4)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009).
[CrossRef]

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

2008 (2)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

2006 (2)

F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006).
[CrossRef] [PubMed]

E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006).
[CrossRef]

2004 (2)

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

2003 (3)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

2002 (2)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

2000 (2)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

1999 (1)

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

1998 (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

1991 (2)

R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178(1), 195–205 (1991).
[CrossRef]

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aussenegg, F.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Bachelier, G.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Bardhan, R.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

Barrera, R. G.

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

Beitia, C.

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009).
[CrossRef]

Bonnet, C.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Borensztein, Y.

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

Bozhevolnyi, S. I.

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

Brinson, B. E.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

Broyer, M.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Chan, V.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cottancin, E.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Daniel, B.

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Eremin, Y.

E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006).
[CrossRef]

Eremina, E.

E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Funston, A.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Geier, S.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

González, F.

F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006).
[CrossRef] [PubMed]

Goodrich, G. P.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

Grady, N. K.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

Grillet, N.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Hafner, J. H.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

Halas, N. J.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Hartland, G. V.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Hecker, N.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Hetterich, M.

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Hu, M.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Knight, M. W.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Krenn, J.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Kvietkova, J.

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Lassiter, J. B.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

Lazzari, R.

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Lermé, J.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Levin, C. S.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Marhaba, S.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Mirin, N.

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Möller, M.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Moreno, F.

F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006).
[CrossRef] [PubMed]

Mulvaney, P.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

Nieto, J.

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

Nordlander, P.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Novo, C.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Pellarin, M.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178(1), 195–205 (1991).
[CrossRef]

Saiz, J. M.

F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006).
[CrossRef] [PubMed]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Schubert, M.

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

Schultz, D.

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

Schultz, D. A.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Spatz, J.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Spemann, D.

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

Staleva, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Tam, F.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

Vialle, J.-L.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Videen, G.

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Wang, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wriedt, T.

E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006).
[CrossRef]

Wu, Y.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Xia, Y.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Zou, S.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

Adv. Opt. Phot. (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[CrossRef]

J. Mater. Chem. (1)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
[CrossRef]

J. Phys. Chem. C (1)

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009).
[CrossRef]

Langmuir (1)

B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008).
[CrossRef]

Nano Lett. (4)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004).
[CrossRef]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Opt. Commun. (1)

E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006).
[CrossRef]

Opt. Express (1)

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Physica A (1)

R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178(1), 195–205 (1991).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Thin Solid Films (1)

J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004).
[CrossRef]

Other (4)

J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941).

R. Juškaitis, “Characterizing high numerical aperture microscope objective lenses,” in Optical Imaging and Microscopy, 2 ed., P. Török and F.-J. Kao, eds. (Springer, Berlin, 2007), pp. 21–43.

L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006).

U. Kreibig, and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the nanoshell-substrate geometry. A dark-field objective collects light scattered by the nanoparticle, here an isolated Au-Silica nanoshell, separated from a dielectric substrate by a distance D, where D < 0 corresponds to a facet on the nanoparticle. Radiation cones corresponding to the numerical aperture of four common objectives are shown (NA = 0.42, 0.65, 0.90, and 1.00). Experimentally, the dark field geometry allows excitation over a narrow range of k vectors incident at an angle θ onto the substrate; in simulations the illumination is modeled as a monochromatic plane wave using the Fresnel equations to account for the presence of the substrate.

Fig. 2
Fig. 2

Experimental spectra for an [r1, r2] ~[62, 95] nm nanoshell showing scattering spectra for P-polarized (red) and S-polarized (blue) incident light for two different objectives (NA = 0.42 and 0.65) and an excitation angle θ = 12°. Spectra for an excitation angle of θ = 35° are also shown for a collection NA = 0.42 (black). Inset shows an SEM image of the nanoparticle corresponding to these spectra.

Fig. 3
Fig. 3

Simulated spectra showing NA dependence for an [r1, r2] = [62, 95] nm nanoshell supported by a dielectric substrate (n = 2.6) for θ = 12° and polarization either perpendicular (P, red) or parallel (S, blue) to the substrate. The sensitive spectral dependence on gap geometry is illustrated with a nanoshell (a) separated from the substrate by a 3 nm gap, with Mie theory for the same nanoshell in air (gray), and (b) with a 3 nm facet (D = −3 nm) in contact with the substrate. (i) quadrupolar mode at 565 nm, (ii) transverse dipolar mode at 695 nm, and (iii) axial dipolar mode at 900 nm in wavelength. For NA = 0.42, excitation with θ = 35° is also shown (black lines). Spectra are normalized and offset for clarity.

Fig. 4
Fig. 4

Scattering spectra and radiation patterns for a [r1, r2] = [62, 95] nm nanoshell with a 3 nm facet supported on a substrate (n = 2.6) and either (a) P-polarized or (b) S-polarized excitation. Radiation diagrams show the far-field radiation on a hemispherical surface centered on the nanoparticle (normalized for clarity), with horizontal lines indicating the lower integration boundary for each simulated NA.

Fig. 5
Fig. 5

Simulated spectra for a [62, 95] nm nanoshell with D = −3 nm showing the effect of incidence angle for (a) p polarized light for NA = 0.42 and 1.00 and (b) s polarized light for NA = 0.42. Spectra are normalized for clarity.

Metrics