Abstract

We report on intense red fluorescence from Mn2+-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na2O-SO3-P2O5. As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO3-rich phase. Crystal formation is then confined to the relict structure of phase separation. The whole synthesis procedure is performed in air at ≤ 800 °C. Electron spin resonance and Raman spectroscopy indicate that Mn2+ species are incorporated on Zn2+ sites with increasingly ionic character for increasing concentration. Correspondingly, in the glasses, increasing MnO content results in decreasing network polymerization. Stable glasses and continuously increasing emission intensity are observed for relatively high dopant concentration of up to 3 mol.%. Recrystallization of the glass results in strongly increasing emission intensity. Dynamic emission spectroscopy reveals only on type of emission centers in the glassy material, whereas three different centers are observed in the glass ceramic. These are attributed to octahedrally coordinated Mn2+ in the residual glass phase and in crystalline phosphate and sulfate lattices, respectively. Relatively low crystal field strength results in almost ideal red emission, peaking around 625 nm. Excitation bands lie in the blue-to-green spectral range and exhibit strong overlap. The optimum excitation range matches the emission properties of GaN- and InGaN-based light emitting devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984).
    [CrossRef]
  2. B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
    [CrossRef]
  3. I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
    [CrossRef]
  4. M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
    [CrossRef]
  5. S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
    [CrossRef] [PubMed]
  6. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  7. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  8. L. Wondraczek and P. Pradeau, “Transparent hafnia-containing β-quartz glass ceramics: nucleation and crystallization behavior,” J. Am. Ceram. Soc. 91(6), 1945–1951 (2008).
    [CrossRef]
  9. L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
    [CrossRef]
  10. J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
  11. A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).
  12. V. B. Mikhailik, “VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor,” Mater. Lett. 63(9-10), 803–805 (2009).
    [CrossRef]
  13. C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).
  14. J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
    [CrossRef]
  15. H. W. de Wijn and R. F. van Balderen, “Electron Spin Resonance of Manganese in Borate Glasses,” J. Chem. Phys. 46(4), 1381–1387 (1967).
    [CrossRef]
  16. D. L. Griscom and R. E. Griscom, “Paramagnetic Resonance of Mn2+ in Glasses and Compounds of the Lithium Borate System,” J. Chem. Phys. 47(8), 2711–2722 (1967).
    [CrossRef]
  17. J. S. van Wieringen, “Paramagnetic resonance of divalent manganese incorporated in various lattices,” Discuss. Faraday Soc. 19, 118–126 (1955).
    [CrossRef]
  18. B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
    [CrossRef]
  19. C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4:Mn,” J. Lumin. 69(5-6), 245–248 (1996).
    [CrossRef]
  20. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
    [CrossRef]
  21. E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986).
    [CrossRef]
  22. M. Ganguli and K. J. Rao, “Studies of ternary Li2SO4–Li2O–P2O5 glasses,” J. Non-Cryst. Solids 243(2-3), 251–267 (1999).
    [CrossRef]
  23. K. J. Rao and H. G. K. Sundar, “Electrical conductivity studies in K2SO4-Na2SO4-ZnSO4 glasses and the mixed alkali effect,” Phys. Chem. Glasses 21, 216–220 (1980).
  24. W. Höland, and G. H. Beall, “Glass ceramic technology,” American Ceramic Society, Westerville, OH, USA, 2002.
  25. F. N. Su and Z. Deng, “Influence of chemical environment on the optical properties in transition metal ions doped materials,” J. Fluoresc. 16(1), 43–46 (2006).
    [CrossRef] [PubMed]

2009 (3)

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

V. B. Mikhailik, “VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor,” Mater. Lett. 63(9-10), 803–805 (2009).
[CrossRef]

2008 (2)

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

L. Wondraczek and P. Pradeau, “Transparent hafnia-containing β-quartz glass ceramics: nucleation and crystallization behavior,” J. Am. Ceram. Soc. 91(6), 1945–1951 (2008).
[CrossRef]

2007 (2)

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

2006 (1)

F. N. Su and Z. Deng, “Influence of chemical environment on the optical properties in transition metal ions doped materials,” J. Fluoresc. 16(1), 43–46 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

2004 (1)

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

2001 (1)

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

2000 (1)

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
[CrossRef]

1999 (1)

M. Ganguli and K. J. Rao, “Studies of ternary Li2SO4–Li2O–P2O5 glasses,” J. Non-Cryst. Solids 243(2-3), 251–267 (1999).
[CrossRef]

1998 (1)

B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
[CrossRef]

1997 (1)

C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).

1996 (1)

C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4:Mn,” J. Lumin. 69(5-6), 245–248 (1996).
[CrossRef]

1987 (1)

A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).

1986 (1)

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986).
[CrossRef]

1985 (1)

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

1984 (1)

R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984).
[CrossRef]

1980 (1)

K. J. Rao and H. G. K. Sundar, “Electrical conductivity studies in K2SO4-Na2SO4-ZnSO4 glasses and the mixed alkali effect,” Phys. Chem. Glasses 21, 216–220 (1980).

1967 (2)

H. W. de Wijn and R. F. van Balderen, “Electron Spin Resonance of Manganese in Borate Glasses,” J. Chem. Phys. 46(4), 1381–1387 (1967).
[CrossRef]

D. L. Griscom and R. E. Griscom, “Paramagnetic Resonance of Mn2+ in Glasses and Compounds of the Lithium Borate System,” J. Chem. Phys. 47(8), 2711–2722 (1967).
[CrossRef]

1955 (1)

J. S. van Wieringen, “Paramagnetic resonance of divalent manganese incorporated in various lattices,” Discuss. Faraday Soc. 19, 118–126 (1955).
[CrossRef]

Adam, J. L.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Amrein, T.

C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4:Mn,” J. Lumin. 69(5-6), 245–248 (1996).
[CrossRef]

Behrens, H.

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

Bettinelli, M.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Blasse, G.

A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).

Brow, R. K.

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
[CrossRef]

Cabrera B, E.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Caldino G, U.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Camarillo G, E.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Chen, G.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Cheviré, F.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Chryssikos, G. D.

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986).
[CrossRef]

Corliss, C.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

Da, N.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

de Wijn, H. W.

H. W. de Wijn and R. F. van Balderen, “Electron Spin Resonance of Manganese in Borate Glasses,” J. Chem. Phys. 46(4), 1381–1387 (1967).
[CrossRef]

del Castillo, H.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Deng, Z.

F. N. Su and Z. Deng, “Influence of chemical environment on the optical properties in transition metal ions doped materials,” J. Fluoresc. 16(1), 43–46 (2006).
[CrossRef] [PubMed]

Deubener, J.

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

Faber, A. J.

A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).

Flores J, M. C.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Ganguli, M.

M. Ganguli and K. J. Rao, “Studies of ternary Li2SO4–Li2O–P2O5 glasses,” J. Non-Cryst. Solids 243(2-3), 251–267 (1999).
[CrossRef]

Gomes, L.

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

Gopal, N. O.

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

Griscom, D. L.

D. L. Griscom and R. E. Griscom, “Paramagnetic Resonance of Mn2+ in Glasses and Compounds of the Lithium Borate System,” J. Chem. Phys. 47(8), 2711–2722 (1967).
[CrossRef]

Griscom, R. E.

D. L. Griscom and R. E. Griscom, “Paramagnetic Resonance of Mn2+ in Glasses and Compounds of the Lithium Borate System,” J. Chem. Phys. 47(8), 2711–2722 (1967).
[CrossRef]

Hernández A, J.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Hirao, K.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Jorgensen, C. K.

R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984).
[CrossRef]

Kamitsos, E. I.

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986).
[CrossRef]

Karakassides, M. A.

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986).
[CrossRef]

Kisilev, A.

R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984).
[CrossRef]

Kojima, K.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).

Krolikowski, S.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

Linga Raju, C.

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

MacHado, I. E. C.

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

Martinelli, J. R.

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

Mikhailik, V. B.

V. B. Mikhailik, “VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor,” Mater. Lett. 63(9-10), 803–805 (2009).
[CrossRef]

Moine, B.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Murrieta S, H.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Nakaya, T.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Narasimhulu, K. V.

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

Ogura, F.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Peng, M.

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

Pradeau, P.

L. Wondraczek and P. Pradeau, “Transparent hafnia-containing β-quartz glass ceramics: nucleation and crystallization behavior,” J. Am. Ceram. Soc. 91(6), 1945–1951 (2008).
[CrossRef]

Prado, L.

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

Prem Kumar, C.

B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
[CrossRef]

Prison, J. M.

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

Qiu, J.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Rao, J. L.

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
[CrossRef]

Rao, K. J.

M. Ganguli and K. J. Rao, “Studies of ternary Li2SO4–Li2O–P2O5 glasses,” J. Non-Cryst. Solids 243(2-3), 251–267 (1999).
[CrossRef]

B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
[CrossRef]

K. J. Rao and H. G. K. Sundar, “Electrical conductivity studies in K2SO4-Na2SO4-ZnSO4 glasses and the mixed alkali effect,” Phys. Chem. Glasses 21, 216–220 (1980).

Reddy, B. C. V.

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

Reisfeld, R.

R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984).
[CrossRef]

Ronda, C. R.

C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4:Mn,” J. Lumin. 69(5-6), 245–248 (1996).
[CrossRef]

Scherer, G. W.

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

Si, J.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Speghini, A.

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Sreedhar, B.

C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).

Stiegelschmitt, A.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

Su, F. N.

F. N. Su and Z. Deng, “Influence of chemical environment on the optical properties in transition metal ions doped materials,” J. Fluoresc. 16(1), 43–46 (2006).
[CrossRef] [PubMed]

Sudhakar Reddy, B.

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

Sugar, J.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

Sumalatha, C.

C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).

Sundar, H. G. K.

K. J. Rao and H. G. K. Sundar, “Electrical conductivity studies in K2SO4-Na2SO4-ZnSO4 glasses and the mixed alkali effect,” Phys. Chem. Glasses 21, 216–220 (1980).

Tessier, F.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Vaidhyanathan, B.

B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
[CrossRef]

van Balderen, R. F.

H. W. de Wijn and R. F. van Balderen, “Electron Spin Resonance of Manganese in Borate Glasses,” J. Chem. Phys. 46(4), 1381–1387 (1967).
[CrossRef]

van der Weg, F.

A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).

van Die, A.

A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).

van Wieringen, J. S.

J. S. van Wieringen, “Paramagnetic resonance of divalent manganese incorporated in various lattices,” Discuss. Faraday Soc. 19, 118–126 (1955).
[CrossRef]

Wondraczek, L.

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

L. Wondraczek and P. Pradeau, “Transparent hafnia-containing β-quartz glass ceramics: nucleation and crystallization behavior,” J. Am. Ceram. Soc. 91(6), 1945–1951 (2008).
[CrossRef]

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

Yamazaki, M.

C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).

Yang, Y.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Yuan, S.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Yue, Y.

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

Zhang, X.

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

Zhu, C.

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984).
[CrossRef]

Discuss. Faraday Soc. (1)

J. S. van Wieringen, “Paramagnetic resonance of divalent manganese incorporated in various lattices,” Discuss. Faraday Soc. 19, 118–126 (1955).
[CrossRef]

J. Am. Ceram. Soc. (2)

L. Wondraczek and P. Pradeau, “Transparent hafnia-containing β-quartz glass ceramics: nucleation and crystallization behavior,” J. Am. Ceram. Soc. 91(6), 1945–1951 (2008).
[CrossRef]

L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007).
[CrossRef]

J. Chem. Phys. (2)

H. W. de Wijn and R. F. van Balderen, “Electron Spin Resonance of Manganese in Borate Glasses,” J. Chem. Phys. 46(4), 1381–1387 (1967).
[CrossRef]

D. L. Griscom and R. E. Griscom, “Paramagnetic Resonance of Mn2+ in Glasses and Compounds of the Lithium Borate System,” J. Chem. Phys. 47(8), 2711–2722 (1967).
[CrossRef]

J. Fluoresc. (1)

F. N. Su and Z. Deng, “Influence of chemical environment on the optical properties in transition metal ions doped materials,” J. Fluoresc. 16(1), 43–46 (2006).
[CrossRef] [PubMed]

J. Lumin. (1)

C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4:Mn,” J. Lumin. 69(5-6), 245–248 (1996).
[CrossRef]

J. Mol. Struct. (1)

B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005).
[CrossRef]

J. Non-Cryst. Solids (3)

I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004).
[CrossRef]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
[CrossRef]

M. Ganguli and K. J. Rao, “Studies of ternary Li2SO4–Li2O–P2O5 glasses,” J. Non-Cryst. Solids 243(2-3), 251–267 (1999).
[CrossRef]

J. Phys. Chem. (1)

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).

J. Phys. Chem. Solids (1)

B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998).
[CrossRef]

Mater. Lett. (1)

V. B. Mikhailik, “VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor,” Mater. Lett. 63(9-10), 803–805 (2009).
[CrossRef]

Opt. Express (1)

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

Phys. Chem. Glasses (3)

C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).

A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).

K. J. Rao and H. G. K. Sundar, “Electrical conductivity studies in K2SO4-Na2SO4-ZnSO4 glasses and the mixed alkali effect,” Phys. Chem. Glasses 21, 216–220 (1980).

Phys. Status Solidi C (1)

M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007).
[CrossRef]

Other (1)

W. Höland, and G. H. Beall, “Glass ceramic technology,” American Ceramic Society, Westerville, OH, USA, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical excitation (monitoring wavelength of emission peak) and emission spectra (excitation wavelength of 409 nm), (A), and corresponding electronic band structure (B) of Mn2+-doped sulfophosphate glasses of type SP11. Labels in (A) indicate concentration of MnO in mol.%. Inset: Photograph of samples SP11_30 (top), SP11_07 (middle), SP11_01 (bottom).

Fig. 2
Fig. 2

ESR (A) and Raman spectra of Mn2+-doped sulfophosphate glasses of type SP11. Labels indicate concentration of MnO (mol.%). Inset: Intensity ratio of the Raman bands at 1050 cm−1 and 992 cm−1.

Fig. 3
Fig. 3

In situ X-ray diffraction patterns as taken during heating samples SP6, SP16 and SP19 (varying SO4 2-/PO4 3- ratio). Labels indicate respective temperature. Spectra are initially dominated by sulfate phases Na2SO4, JCPDS 086-0800 (red arrows); ZnSO4, JCPDS 070-1255 (green dotted line in SP16), later by various phosphate phases (blue arrows).

Fig. 4
Fig. 4

Optical emission spectra of as-made glass SP16_10 and corresponding glass ceramic (heat treated for 4h at 380 °C). Inset: Photographs of both samples (A) under ambient light and (B) under 40 W UV-A broadband illumination.

Fig. 5
Fig. 5

Optical emission spectra of glass ceramic (A) and glass (B) SP11_07 for varying excitation wavelength (labels).

Fig. 6
Fig. 6

Time-resolved delay curves of emission from glass ceramic (A) and luminescence decay curves (B) of glass and glass ceramic.

Tables (1)

Tables Icon

Table 1 Nominal compositions and basic physical data of examined glasses.

Metrics