Abstract

Sensitivity to disk vibration and large component number, which complicates assembly and optical alignment, are the drawbacks of traditional optical pickup systems. Here, a numerical method of designing a dual-wavelength diffractive objective lens with high numerical aperture for generating arbitrarily discrete, diffractionless beams with extended depth of focus is presented. Simulation and experimental results show that the optimized design provides better resolution, longer depth of focus and higher diffractive efficiency. The proposed design is promising for next-generation optical pickup systems that are more robust to disk vibration and easier to assemble.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991).
    [CrossRef]
  2. L. C. Laycock and S. C. Webster, “Bessel beams: their generation and application,” GEC J. Res. 10, 36–51 (1992).
  3. J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. A 50(2), 166 (1960).
    [CrossRef]
  4. T. Hidaka, “Generation of a diffraction-free laser beam using a specific Fresnel zone plate,” Jpn. J. Appl. Phys. 30(Part 1, No. 8), 1738–1739 (1991).
    [CrossRef]
  5. M. Rioux, R. Tremblay, and P. A. Bélanger, “Linear, annular, and radial focusing with axicons and applications to laser machining,” Appl. Opt. 17(10), 1532–1536 (1978).
    [CrossRef] [PubMed]
  6. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [CrossRef]
  7. V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56(2), 1613–1620 (1997).
    [CrossRef]
  8. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
    [CrossRef] [PubMed]
  9. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15(9), 2383–2390 (1998).
    [CrossRef]
  10. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
    [CrossRef]
  11. L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14(1), 27–33 (1997).
    [CrossRef]
  12. A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered Fabry-Perot resonator,” J. Opt. Soc. Am. A 9(2), 282–286 (1992).
    [CrossRef]
  13. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991).
    [CrossRef] [PubMed]
  14. B. Z. Dong, G. Z. Yang, B. Y. Gu, and O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13(1), 97–103 (1996).
    [CrossRef]
  15. J. Rosen, B. Salik, and A. Yariv, “Pseudo-nondiffracting beams generated by radial harmonic functions,” J. Opt. Soc. Am. A 12(11), 2446–2457 (1995).
    [CrossRef]
  16. J. Rosen, B. Salik, A. Yariv, and H. K. Liu, “Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse,” Opt. Lett. 20(5), 423–425 (1995).
    [CrossRef] [PubMed]
  17. R. Liu, B. Y. Gu, B. Z. Dong, and G. Z. Yang, “Diffractive phase elements that synthesize color pseudo-nondiffracting beams,” Opt. Lett. 23(8), 633–635 (1998).
    [CrossRef]
  18. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 131.
  19. H. H. Lin and M. H. Lu, “Dual-Wavelength Membrane-Based Diffractive Optical Element with Extended Depth-of-Focus for Optical Pickup Head,” Jpn. J. Appl. Phys. 46(No. 8B), 5485–5493 (2007).
    [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed., pp. 66.
  21. R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1999), 2nd ed., pp. 6–92.
  22. M. W. Farn and J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” Proc. SPIE 1211, 125–136 (1990).
    [CrossRef]
  23. J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
    [CrossRef]
  24. M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
    [CrossRef]

2007 (1)

H. H. Lin and M. H. Lu, “Dual-Wavelength Membrane-Based Diffractive Optical Element with Extended Depth-of-Focus for Optical Pickup Head,” Jpn. J. Appl. Phys. 46(No. 8B), 5485–5493 (2007).
[CrossRef]

2002 (1)

1998 (2)

1997 (2)

L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14(1), 27–33 (1997).
[CrossRef]

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56(2), 1613–1620 (1997).
[CrossRef]

1996 (1)

1995 (2)

1992 (3)

1991 (4)

T. Hidaka, “Generation of a diffraction-free laser beam using a specific Fresnel zone plate,” Jpn. J. Appl. Phys. 30(Part 1, No. 8), 1738–1739 (1991).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991).
[CrossRef] [PubMed]

M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
[CrossRef]

R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991).
[CrossRef]

1990 (2)

M. W. Farn and J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” Proc. SPIE 1211, 125–136 (1990).
[CrossRef]

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

1987 (1)

1978 (1)

1960 (1)

J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. A 50(2), 166 (1960).
[CrossRef]

Bará, S.

Bélanger, P. A.

Bergstrom, J. W.

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

Chen, Z.

Cox, A. J.

Cox, J. A.

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

Davidson, N.

Dibble, D. C.

Ding, Z.

Dong, B. Z.

Durnin, J.

Ersoy, O. K.

Farn, M. W.

M. W. Farn and J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” Proc. SPIE 1211, 125–136 (1990).
[CrossRef]

Friesem, A. A.

Fritz, B. S.

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

Goodman, J. W.

M. W. Farn and J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” Proc. SPIE 1211, 125–136 (1990).
[CrossRef]

Gu, B. Y.

Hasman, E.

Herman, R. M.

Hidaka, T.

T. Hidaka, “Generation of a diffraction-free laser beam using a specific Fresnel zone plate,” Jpn. J. Appl. Phys. 30(Part 1, No. 8), 1738–1739 (1991).
[CrossRef]

Holz, M.

M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
[CrossRef]

Jaroszewicz, Z.

Knowlden, R. E.

M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
[CrossRef]

Kolodziejczyk, A.

Lanzl, T.

Laycock, L. C.

L. C. Laycock and S. C. Webster, “Bessel beams: their generation and application,” GEC J. Res. 10, 36–51 (1992).

Lee, J. C.

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

Lin, H. H.

H. H. Lin and M. H. Lu, “Dual-Wavelength Membrane-Based Diffractive Optical Element with Extended Depth-of-Focus for Optical Pickup Head,” Jpn. J. Appl. Phys. 46(No. 8B), 5485–5493 (2007).
[CrossRef]

Liu, H. K.

Liu, R.

Lu, M. H.

H. H. Lin and M. H. Lu, “Dual-Wavelength Membrane-Based Diffractive Optical Element with Extended Depth-of-Focus for Optical Pickup Head,” Jpn. J. Appl. Phys. 46(No. 8B), 5485–5493 (2007).
[CrossRef]

Maier, M.

McLeod, J. H.

J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. A 50(2), 166 (1960).
[CrossRef]

Medeiros, S.

M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
[CrossRef]

Morales, J.

Nelson, J. S.

Nelson, S. A.

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

Niggl, L.

Peet, V. E.

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56(2), 1613–1620 (1997).
[CrossRef]

Ren, H.

Rioux, M.

Rosen, J.

Salik, B.

Sochacki, J.

Stern, M. B.

M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
[CrossRef]

Tremblay, R.

Tsubin, R. V.

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56(2), 1613–1620 (1997).
[CrossRef]

Webster, S. C.

L. C. Laycock and S. C. Webster, “Bessel beams: their generation and application,” GEC J. Res. 10, 36–51 (1992).

Werner, T. R.

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

Wiggins, T. A.

Yang, G. Z.

Yariv, A.

Zhao, Y.

Appl. Opt. (1)

GEC J. Res. (1)

L. C. Laycock and S. C. Webster, “Bessel beams: their generation and application,” GEC J. Res. 10, 36–51 (1992).

J. Opt. Soc. Am. A (8)

Jpn. J. Appl. Phys. (2)

T. Hidaka, “Generation of a diffraction-free laser beam using a specific Fresnel zone plate,” Jpn. J. Appl. Phys. 30(Part 1, No. 8), 1738–1739 (1991).
[CrossRef]

H. H. Lin and M. H. Lu, “Dual-Wavelength Membrane-Based Diffractive Optical Element with Extended Depth-of-Focus for Optical Pickup Head,” Jpn. J. Appl. Phys. 46(No. 8B), 5485–5493 (2007).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in Bessel beams,” Phys. Rev. A 56(2), 1613–1620 (1997).
[CrossRef]

Proc. SPIE (3)

M. W. Farn and J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” Proc. SPIE 1211, 125–136 (1990).
[CrossRef]

J. A. Cox, T. R. Werner, J. C. Lee, S. A. Nelson, B. S. Fritz, and J. W. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116–124 (1990).
[CrossRef]

M. Holz, M. B. Stern, S. Medeiros, and R. E. Knowlden, “Testing binary optics: accurate high-precision efficiency measurements of microlens arrays in the visible,” Proc. SPIE 1514, 75–89 (1991).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed., pp. 66.

R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1999), 2nd ed., pp. 6–92.

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic diagram of dual-wavelength ADDB diffractive optical system that approaches the front-zone of the near-field diffraction region.

Fig. 2
Fig. 2

Schematic illustration of objective lens for DVD optical pickup head system with dual-wavelength ADDB DOL.

Fig. 3
Fig. 3

Propagation of banded-krait-like beam and 3-D distribution of CP dual-wavelength ADDB DOL with two depth-of-focus regions:
 (a) λ = 650 nm DVD segment, (b) λ = 780 nm CD segment.

Fig. 4
Fig. 4

Propagation of banded-krait-like beam and 3-D distribution of the sixteen-level quantization phase dual-wavelength ADDB DOL with two depth-of-focus regions: 
(a) λ = 650 nm, DVD segment; (b) λ = 780 nm, CD segment.

Fig. 5
Fig. 5

Propagation of banded-krait-like beam and 3-D distribution of the eight-level quantization phase dual-wavelength ADDB DOL with two depth-of-focus regions: 
(a) λ = 650 nm, DVD segment; (b) λ = 780 nm, CD segment.

Fig. 6
Fig. 6

Spot-size diameter of dual-wavelength ADDB DOL for the Airy criterion, 1/e2, and FWHM of CP for two depth-of-focus regions: (a) λ = 650 nm, DVD segment; (b) λ = 780 nm, CD segment.

Fig. 8
Fig. 8

Spot-size diameter of dual-wavelength ADDB DOL for the Airy criterion, 1/e2, and FWHM of the eight-level quantization phases of two depth-of-focus regions: 
(a) λ = 650 nm, DVD segment; (b) λ = 780 nm, CD segment.

Fig. 9
Fig. 9

Surface relief of depth of the CP distribution for the designed dual-wavelength ADDB DOL in DVD optical pickup heads.

Fig. 7
Fig. 7

Spot-size diameter of dual-wavelength ADDB DOL for the Airy criterion, 1/e2, and FWHM of the sixteen-level quantization phases of two depth-of-focus regions: 
(a) λ = 650 nm, DVD segment; (b) λ = 780 nm, CD segment.

Fig. 10
Fig. 10

Diagram illustrating the rings for (a) mask 1, (b) mask 2, and (c) mask 3 of the 8L for optical contact lithography contain 600 concentric circle rings.

Fig. 11
Fig. 11

The red dotted circle shows the fabricated fused-silica-based DOL with diameter of 4.2 mm and dual-wavelength ADDB.

Fig. 12
Fig. 12

SEM micrograph of surface relief structures on the fabricated fused-silica DOL with dual-wavelength ADDB.

Fig. 13
Fig. 13

Fabrication results for the dual-wavelength fused-silica-based ADDB DOL. The fractional profile in (a) 2-D, (b) 3-D, (c) measurement data, and (d) cross-section of the surface-relief structures of the 8L DOL (obtained on a Zygo 3-D surface profiler measuring system).

Fig. 14
Fig. 14

Experimental setup for measuring the performance of the designed fused-silica-based DOL with dual-wavelength ADDB characteristic.

Fig. 15
Fig. 15

Photographs present the spot size of the fused-silica-based DOL with dual-wavelength ADDB for FWHM of λDVD segment for a measuring distance of 40 μm per frame.

Fig. 16
Fig. 16

Photographs present the spot size of the fused-silica-based DOL with dual-wavelength ADDB for FWHM of λCD segment for a measuring distance of 40 μm per frame.

Tables (3)

Tables Icon

Table 1 Specifications of the DVD optical pickup head white paper.

Tables Icon

Table 2 Specifications of the dual-wavelength ADDB DOL for the objective lens of DVD optical pickup head.

Tables Icon

Table 3 Simulated average spot-size diameter for the Airy criterion, 1/e2, and full width at half maximum (FWHM), which have continuous phases (CP) and quantization phases (16L and 8L), for designing the dual-wavelength ADDB DOL for the DVD optical pickup head.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

U 1 ( λ m , r 1 ) = ρ 1 ( λ m , r 1 ) exp [ i ϕ 1 ( λ m , r 1 ) ] ,
ϕ 1 ( λ m , r 1 ) = 2 π λ m [ n ( λ m ) 1 ] h ( r 1 ) .
U 2 ( λ m , r 2 n , Z n ) = ρ 2 ( λ m , r 2 n , Z n ) exp [ i ϕ 2 ( λ m , r 2 n , Z n ) ] ,
U 2 ( λ m , r 2 n , Z n ) = 2 π i λ m Z n exp ( i 2 π Z n λ m ) × 0 R 1 ρ 1 ( r 1 , λ m ) exp { i 2 π λ m [ n ( λ m ) 1 ] h ( r 1 ) }
× exp [ i π ( r 1 2 + r 2 n 2 ) λ m Z n ] × J 0 ( 2 π r 1 r 2 n λ m Z n ) r 1 d r 1 ,
E = m = 1 N λ p = 1 N 2 n n = 1 N z W ( λ m , r 2 p , Z n ) [ ρ ˜ 2 ( λ m , r 2 p , Z n ) | U 2 ( λ m , r 2 p , Z n ) | ] 2 ,
W ( λ m , r 2 p , Z n ) = [ 1 W min N S ( r 2 p , Z n ) s i g n a l z o n e W min N z ( r 2 p , Z n ) N S ( r 2 p , Z n ) , n o n s i g n a l z o n e ,
y (k + 1) ( r 1 ) = y (k) ( r 1 ) + τ (k) d (k) ,
d ( k ) = E [ y ( k ) ( r 1 ) ] + β ( k 1 ) d ( k 1 ) ,
β ( k 1 ) = | E [ y ( k ) ( r 1 ) ] | 2 | E [ y ( k 1 ) ( r 1 ) ] | 2 ,
Nonuniformity = I 2 I 2 I ,
Efficiency Useful energy / Incident energy .
  η s η Tested DOL / η Ideal DOL .
  η Ideal DOL = [ sin ( π 2 n ) π 2 n ] 2 ,
  η Tested DOL E u / E i ,

Metrics