Abstract

Transmission of beams through arrays of coaxial apertures in a thick, perfectly conducting screen is investigated using an angular spectrum approach. It is shown that the transfer function of the screen is complex and strongly dependent on the wavelength and polarization of the incident field and the geometric properties of the screen. Examples of changes in the angular spectrum composition of linearly, radially and azimuthally polarized beams as well as near-field intensity patterns are presented and the role played by different resonant transmission mechanisms discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  3. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 1–19 (2009).
    [Crossref]
  4. S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33(8), 821–823 (2008).
    [Crossref] [PubMed]
  5. Z. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 1–4 (2006).
    [Crossref]
  6. J. M. Brok and H. P. Urbach, “Rigorous model of the scattering of a focused spot by a grating and its application in optical recording,” J. Opt. Soc. Am. A 20(2), 256–272 (2003).
    [Crossref]
  7. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [Crossref] [PubMed]
  8. P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
    [Crossref]
  9. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  10. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
    [Crossref]
  11. A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
    [Crossref]
  12. S. M. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
    [Crossref] [PubMed]
  13. R. Martinez-Herrero, P. M. Mejias, S. Bosch, and A. Carnicer, “Vectorial structure of nonparaxial electromagnetic beams,” J. Opt. Soc. Am. A 18(7), 1678–1680 (2001).
    [Crossref]
  14. F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
    [Crossref]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]

2009 (2)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 1–19 (2009).
[Crossref]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (3)

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
[Crossref] [PubMed]

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
[Crossref]

2006 (2)

S. M. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
[Crossref] [PubMed]

Z. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

2003 (1)

2002 (2)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1988 (1)

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
[Crossref]

Baida, F. I.

F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
[Crossref]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Bosch, S.

Bouhelier, A.

Brok, J. M.

Bruyant, A.

Burge, R. E.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Carnicer, A.

Colas des Francs, G.

Davis, T. J.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Freeman, D.

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Haftel, M. I.

Huang, C.

Ignatovich, F.

Jamieson, D. N.

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lin, J.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Luther-Davies, B.

Martinez-Herrero, R.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

McPhedran, R. C.

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
[Crossref]

Mei, T.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Mejias, P. M.

Milicevic, M.

Mu, G. G.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Novotny, L.

Orbons, S. M.

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Roberts, A.

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Schlockermann, C.

Tan, P. S.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Urbach, H. P.

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Want, Q.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Weeber, J.-C.

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 1–19 (2009).
[Crossref]

Wiederrecht, G. P.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yuan, X.-C.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

Appl. Phys. B (1)

F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
[Crossref]

Appl. Phys. Lett. (1)

P. S. Tan, X.-C. Yuan, J. Lin, Q. Want, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92, 1–3 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
[Crossref]

J. Opt. Soc. Am. A (2)

Nano Lett. (1)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Commun. (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Z. Ruan and M. Qiu, “Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 1–19 (2009).
[Crossref]

Rev. Mod. Phys. (1)

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Periodic array of annular (coaxial) apertures in a metallic screen.

Fig. 2
Fig. 2

Transmission through coaxial hole arrays as a function of angle of incidence and wavelength for TE (a) and TM (b) polarization. The apertures are separated by a distance d, have outer radius 0.45 d, inner radius 0.4d and are located in a screen of thickness 1.5d.

Fig. 3
Fig. 3

Transmitted zeroth order angular spectrum intensity, | A ( k x , k y ) | 2 , for linearly (a-d), radially (e-h) and azimuthally polarized (i-l) beams at wavelengths of 1.02d ((b), (f) and (j)), 2.67d ((c), (g) and (k)) and 3.18d ((d), (h) and (l)). All plots are normalized.

Fig. 4
Fig. 4

Incident and near-field (a distance 0.05d below the lower surface of the array described in the Fig. 2) intensity patterns. The intensity patterns correspond to the beams and wavelengths of Fig. 3. All values are normalized to the maximum of each quantity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = A ( k x , k y ) exp ( i ( k x x + k y y + z k 2 k x 2 k y 2 ) ) d k x d k y
A x ( k x , k y ) = { A 0 exp ( ( k x 2 + k y 2 ) / 4 k 2 w 0 2 ) k x 2 + k y 2 k 2 N A 2 0 k x 2 + k y 2 > k 2 N A 2 A y ( k x , k y ) = 0
A ρ ( k x , k y ) = { A 0 ( k x 2 + k y 2 ) k 2 exp ( ( k x 2 + k y 2 ) / 4 k 2 w 0 2 ) k x 2 + k y 2 k 2 N A 2 0 k x 2 + k y 2 > k 2 N A 2 A φ ( k x , k y ) = 0

Metrics