Abstract

It is shown that asymmetric T-shaped plasmonic gratings can display plasmon-polariton band structures with wide range of band gaps and tunable group velocities. A structure gap is introduced in the post of T-shaped plasmonic gratings and it is found that the size of this gap plays an important role in controlling the plasmon-polariton band gap and group velocities. We obtained variation of energy band gap ranging from 0.4 eV to 0.0323 eV by changing the size of the structure gap from 0 to 250 nm. The plasmon-polariton band structures were obtained by using Rigorous Coupled Wave Analysis. We studied the difference between symmetric and asymmetric T-shaped gratings and found that the symmetric structure has a momentum gap in the photonic band structure, which can be avoided in the asymmetric structure. Furthermore, by varying the post and spacer (made of SiO2) thicknesses we can tune the energy band gap from 0.1 eV to 0.148 eV and from 0.183 eV to 0.19 eV, respectively. In this device, we obtain tunable group velocities ranging from one to several orders of magnitude smaller than the speed of light in the vacuum. This asymmetric T-shaped plasmonic grating is expected to have applications in surface plasmon polariton (SPP) based optical devices, such as filters, waveguides, splitters and lasers, especially for applications requiring large photonic band gap.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Krenn, A. Dereux, J. C. Weeber, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
    [CrossRef]
  2. K. Li, M. I. Stockman, D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, "Photonic band-gap crystals," J. Phys. Condens. Matter 5, 2443-2460 (1993).
    [CrossRef]
  4. B. W. and G. P. Wang "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  5. K. Sakoda, "Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals," Opt. Express 4, 167 (1999).
    [CrossRef] [PubMed]
  6. R. Hooper and J. R. Sambles "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421 (2004).
    [CrossRef]
  7. A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130 (2008).
    [CrossRef]
  8. T. Okamoto, J. Simonen, and S. Kawata "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008)
    [CrossRef]
  9. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
    [CrossRef] [PubMed]
  10. F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
    [CrossRef]
  11. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
    [CrossRef] [PubMed]
  12. J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
    [CrossRef]
  13. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
    [CrossRef] [PubMed]
  14. M. Sandtke and L. Kuipers "Slow guided surface plasmons at telecom frequencies," Nat. Photonics 1, 573-576 (2007).
    [CrossRef]
  15. A. Kocabas, S. Seckin Senlik, and A. Aydinli "Slowing Down Surface Plasmons on a Moiré Surface," Phys. Rev. Lett. 102, 063901 (2009)
    [CrossRef] [PubMed]
  16. C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
    [CrossRef] [PubMed]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  19. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
    [CrossRef] [PubMed]
  20. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]

2009 (3)

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

A. Kocabas, S. Seckin Senlik, and A. Aydinli "Slowing Down Surface Plasmons on a Moiré Surface," Phys. Rev. Lett. 102, 063901 (2009)
[CrossRef] [PubMed]

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

2008 (4)

D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
[CrossRef] [PubMed]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008)
[CrossRef]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Sandtke and L. Kuipers "Slow guided surface plasmons at telecom frequencies," Nat. Photonics 1, 573-576 (2007).
[CrossRef]

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

2005 (1)

B. W. and G. P. Wang "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

2004 (1)

R. Hooper and J. R. Sambles "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421 (2004).
[CrossRef]

2003 (1)

K. Li, M. I. Stockman, D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

2002 (1)

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

1999 (2)

K. Sakoda, "Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals," Opt. Express 4, 167 (1999).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

1995 (1)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[CrossRef]

1993 (1)

E. Yablonovitch, "Photonic band-gap crystals," J. Phys. Condens. Matter 5, 2443-2460 (1993).
[CrossRef]

Abbas, M. N.

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

Alleyne, C. J.

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

Aydinli, A.

A. Kocabas, S. Seckin Senlik, and A. Aydinli "Slowing Down Surface Plasmons on a Moiré Surface," Phys. Rev. Lett. 102, 063901 (2009)
[CrossRef] [PubMed]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Beggs, D. M.

D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
[CrossRef] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Chang, Y. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Chang, Y.-C.

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

Chen, C. Y.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Dereux, A.

J. R. Krenn, A. Dereux, J. C. Weeber, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Ertas, G.

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

Gaylord, T. K.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[CrossRef]

Grann, E. B.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[CrossRef]

Han, D.

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

Heebner, J. E.

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Hooper, R.

R. Hooper and J. R. Sambles "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421 (2004).
[CrossRef]

Hu, X.

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

Jiang, Y. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008)
[CrossRef]

Kirk, A. G.

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Kocabas, A.

A. Kocabas, S. Seckin Senlik, and A. Aydinli "Slowing Down Surface Plasmons on a Moiré Surface," Phys. Rev. Lett. 102, 063901 (2009)
[CrossRef] [PubMed]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

Krauss, T. F.

D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

J. R. Krenn, A. Dereux, J. C. Weeber, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Kuipers, L.

M. Sandtke and L. Kuipers "Slow guided surface plasmons at telecom frequencies," Nat. Photonics 1, 573-576 (2007).
[CrossRef]

Lee, S. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Li, K.

K. Li, M. I. Stockman, D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Liu, X.

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

Maystre, D.

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

McPhedran, R. C.

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

Moharam, M. G.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[CrossRef]

Nicorovici, N.-A. P.

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

O'Faolain, L.

D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008)
[CrossRef]

Park, Q. H.

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Pommet, D. A.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Sakoda, K.

K. Sakoda, "Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals," Opt. Express 4, 167 (1999).
[CrossRef] [PubMed]

Sambles, J. R.

R. Hooper and J. R. Sambles "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421 (2004).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Sandtke, M.

M. Sandtke and L. Kuipers "Slow guided surface plasmons at telecom frequencies," Nat. Photonics 1, 573-576 (2007).
[CrossRef]

Seckin Senlik, S.

A. Kocabas, S. Seckin Senlik, and A. Aydinli "Slowing Down Surface Plasmons on a Moiré Surface," Phys. Rev. Lett. 102, 063901 (2009)
[CrossRef] [PubMed]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

Senlik, S. S.

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

Shih, M.-H.

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008)
[CrossRef]

Stockman, M. I.

K. Li, M. I. Stockman, D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Tsai, D. P.

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

W., B.

B. W. and G. P. Wang "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, C. M.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Wang, C.-M.

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

Wang, G. P.

B. W. and G. P. Wang "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

White, T. P.

D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
[CrossRef] [PubMed]

Wu, F.

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Photonic band-gap crystals," J. Phys. Condens. Matter 5, 2443-2460 (1993).
[CrossRef]

Ye, Y. H.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Zi, J.

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

B. W. and G. P. Wang "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[CrossRef]

J. Phys. Condens. Matter (1)

E. Yablonovitch, "Photonic band-gap crystals," J. Phys. Condens. Matter 5, 2443-2460 (1993).
[CrossRef]

J. Phys.: Condens. Matter (1)

F. Wu, D. Han, X. Hu, X. Liu and J. Zi "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting," J. Phys.: Condens. Matter 21,185010 (2009).
[CrossRef]

Nat. Photonics (1)

M. Sandtke and L. Kuipers "Slow guided surface plasmons at telecom frequencies," Nat. Photonics 1, 573-576 (2007).
[CrossRef]

Opt. Express (5)

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007).
[CrossRef] [PubMed]

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor," Opt. Express 17, 13526-13531 (2009).
[CrossRef] [PubMed]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

K. Sakoda, "Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals," Opt. Express 4, 167 (1999).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
[CrossRef] [PubMed]

Phys. Rev. B (4)

R. Hooper and J. R. Sambles "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421 (2004).
[CrossRef]

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77, 195130 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach," Phys. Rev. B 77, 115425 (2008)
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Phys. Rev. E (1)

J. E. Heebner, R. W. Boyd, and Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide," Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

A. Kocabas, S. Seckin Senlik, and A. Aydinli "Slowing Down Surface Plasmons on a Moiré Surface," Phys. Rev. Lett. 102, 063901 (2009)
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

K. Li, M. I. Stockman, D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic geometry of the investigated structures, (a) plasmonic multilayer structure, (b) Symmetric T-shaped array and (c) Asymmetric T-shaped array.

Fig. 2.
Fig. 2.

Various stages of conversion of SPP mode to LSPP mode by varying Gt for (a) Gt =t w=330 nm, (b) Gt =250 nm, (c) Gt =160 nm, (d) Gt =80 nm, (e) Gt =50 nm and (f) Gt =0 nm.

Fig.3
Fig.3

(a) Symmetric T-shaped dispersion relation at Gt =160 nm. Inset: reflectivity versus photon energy of symmetric T-shaped at normal incidence. (b) Asymmetric T-shaped dispersion relation at Gt =160 nm. Inset: reflectivity versus photon energy of asymmetric T-shaped at normal incidence.

Fig. 4
Fig. 4

|Hy|2 distribution within two periods for (a) multilayer structure at the crossing point of SPP mode, and (b) E+ and (c) E- for asymmetric T-shaped array with Gt = 160 nm at band edges.

Fig. 5
Fig. 5

(a) Photon energy of band gap edge [i.e. E+ (solid line) and E- (dashed line)] versus post width, WT, at Gt =160 nm and t w=330 nm. (b) Photon energy of band gap edge versus SiO2 thickness, t w, at Gt =160 nm and t w=330 nm. (c) Photon energy of band gap edge versus gap thickness, Gt , at WT=70 nm and t w=330 nm.

Fig. 6.
Fig. 6.

Group velocity versus k x for asymmetric T-structure with Gt =160 nm for (a) E+ and (b) E- modes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cot ( K x 0 ) = t p sin ( K W T / 2 ) sin ( K d ) t sin ( K W / 2 ) + t p sin ( K W T / 2 ) cos ( K d ) , cot ( φ 2 + 2 K x 0 ) = t p sin ( K W T ) sin ( 2 K d ) t sin ( K W ) + t p sin ( K W T ) cos ( 2 K d ) .

Metrics