Abstract

We demonstrate a fiber-based probe for maximum collection of the coherent anti-Stokes Raman scattering (CARS) signal in biological tissues. We discuss the design challenges including capturing the back-scattered forward generated CARS signal in the sample and the effects of fiber nonlinearities on the propagating pulses. Three different single mode fibers (fused silica fiber, photonic crystal fiber and double-clad photonic crystal fiber) were tested for the probe design. We investigated self-phase modulation, stimulated Raman scattering (SRS) and four-wave-mixing (FWM) generation in the fiber: nonlinear processes expected to occur in a two-beam excitation based probe. While SPM and SRS induced spectral broadening was negligible, a strong non phase-matched FWM contribution was found to be present in all the tested fibers for excitation conditions relevant to CARS microscopy of tissues. To spectrally suppress this strong contribution, the probe design incorporates separate fibers for excitation light delivery and for signal detection, in combination with dichroic optics. CARS images of the samples were recorded by collecting the back-scattered forward generated CARS signal in the sample through a multi-mode fiber. Different biological tissues were imaged ex vivo in order to assess the performance of our fiber-delivered probe for CARS imaging, a tool which we consider an important advance towards label-free, in vivo probing of superficial tissues.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Appl. Spectrosc. 91, 197–208 (2007).
    [Crossref]
  2. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [Crossref]
  3. F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
    [Crossref]
  4. T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
    [Crossref]
  5. T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
    [PubMed]
  6. H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
    [Crossref]
  7. M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy,” Appl. Opt. 48, D79–D87 (2009).
    [Crossref]
  8. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [Crossref] [PubMed]
  9. W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett. 33, 1324–1326 (2008).
    [Crossref] [PubMed]
  10. G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, “Rotational multiphoton endoscopy with a 1 μm fiber laser system,” Opt. Lett. 34, 2249–2252 (2009).
    [Crossref] [PubMed]
  11. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16, 5556–5564 (2008).
    [Crossref] [PubMed]
  12. R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,“Appl. Opt. 48, 3396–3400 (2009).
    [Crossref]
  13. W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
    [Crossref] [PubMed]
  14. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
    [Crossref] [PubMed]
  15. H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
    [Crossref] [PubMed]
  16. Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156, 351–359 (2006).
    [Crossref] [PubMed]
  17. E. R. Andresen, S. R. Keiding, and E. O. Potma, “Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy,” Opt. Express 14, 7246–7251 (2006).
    [Crossref] [PubMed]
  18. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27, 1513–1515 (2002).
    [Crossref]
  19. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber ” Opt. Lett. 29, 1285–1287 (2004).
    [Crossref] [PubMed]
  20. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528–5534 (2008).
    [Crossref]
  21. D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, “Ultrafast optical pulse delivery with fibers for nonlinear mir-coscopy,” Microsc. Res. Tech. 71, 887–896 (2008).
    [Crossref] [PubMed]
  22. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47, 1510–1517 (2008).
    [Crossref] [PubMed]
  23. A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, “Wide-range all-optical wavelength conversion using dual-wavelength-pumped fiber Raman converter,” J. Lightwave Technol. 16, 92–99 (1998).
    [Crossref]
  24. C. Xiong, Z. Chen, and W. J. Wadsworth, “Dual-wavelength-pumped supercontinuum generation in an all-fiber device,” J. Lightwave Technol. 27, 1638–1643 (2009).
    [Crossref]
  25. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser.,” Opt. Lett. 28, 1820–1822 (2003).
    [Crossref] [PubMed]
  26. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020 (2006).
    [Crossref] [PubMed]
  27. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14, 1027–1032 (2006).
    [Crossref] [PubMed]

2009 (7)

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[Crossref]

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy,” Appl. Opt. 48, D79–D87 (2009).
[Crossref]

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,“Appl. Opt. 48, 3396–3400 (2009).
[Crossref]

C. Xiong, Z. Chen, and W. J. Wadsworth, “Dual-wavelength-pumped supercontinuum generation in an all-fiber device,” J. Lightwave Technol. 27, 1638–1643 (2009).
[Crossref]

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, “Rotational multiphoton endoscopy with a 1 μm fiber laser system,” Opt. Lett. 34, 2249–2252 (2009).
[Crossref] [PubMed]

2008 (7)

2007 (2)

J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Appl. Spectrosc. 91, 197–208 (2007).
[Crossref]

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

2006 (6)

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (1)

1998 (1)

Ahn, Y. C.

Andresen, E. R.

Barretto, R. P. J.

Barretto, R.P.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Burns, L.D.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Camarillo, I. G.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

Chen, Z.

Cheng, J. X.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[Crossref]

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
[Crossref]

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Appl. Spectrosc. 91, 197–208 (2007).
[Crossref]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
[Crossref] [PubMed]

Choi, B.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy,” Appl. Opt. 48, D79–D87 (2009).
[Crossref]

Choi, H.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, “Ultrafast optical pulse delivery with fibers for nonlinear mir-coscopy,” Microsc. Res. Tech. 71, 887–896 (2008).
[Crossref] [PubMed]

Choi, H. Y.

Choi, W. J.

Cocker, E. D.

Cocker, E.D.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Cote, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Côté, D.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Cranfield, C.

Engelbrecht, C. J.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Flusberg, B. A.

Foster, M. A.

Fu, L.

Gaeta, A. L.

Gan, X.

Ganikhanov, F.

Göbel, W.

Gu, M.

Helmchen, F.

Henry, F.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Huff, T. B.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
[Crossref]

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
[Crossref] [PubMed]

Jain, A.

Johnston, R. S.

Jung, J.C.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Jung, W.

Kannari, F.

Keiding, S. R.

Kim, D.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, “Ultrafast optical pulse delivery with fibers for nonlinear mir-coscopy,” Microsc. Res. Tech. 71, 887–896 (2008).
[Crossref] [PubMed]

Kleinfeld, D.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156, 351–359 (2006).
[Crossref] [PubMed]

Ko, T. H.

Kochevar, I. E.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

König, K.

Krasieva, T. B.

Langohr, I. M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[Crossref]

Le, T. T.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

Lee, B. H.

Lee, D. S.

Légaré, F.

LeHarzic, R.

Lin, C.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Lin, C. P.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Liu, G.

Maillotte, H.

McClure, R. A.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy,” Appl. Opt. 48, D79–D87 (2009).
[Crossref]

McCormic, D. T.

Messerschmidt, B.

Moll, K. D.

Mussot, A.

Na, J.

Nakata, T.

Nguyen, Q. T.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156, 351–359 (2006).
[Crossref] [PubMed]

Nichols, M. B.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

Nimmerjahn, A.

Ouzounov, D. G.

Piyawattanametha, W.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020 (2006).
[Crossref] [PubMed]

Potma, E. O.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy,” Appl. Opt. 48, D79–D87 (2009).
[Crossref]

E. R. Andresen, S. R. Keiding, and E. O. Potma, “Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy,” Opt. Express 14, 7246–7251 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Provino, L.

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Ra, H.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Ra, H. J.

Randolph, M. A.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Redmond, R. W.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Rehrer, C. W.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

Riemann, I.

Rust, E. A. Z.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Ryu, S. Y.

Schnitzer, M. J.

Schnitzer, M.J.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Seibel, E. J.

Shi, Y.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
[Crossref]

So, P. T. C.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, “Ultrafast optical pulse delivery with fibers for nonlinear mir-coscopy,” Microsc. Res. Tech. 71, 887–896 (2008).
[Crossref] [PubMed]

Solgaard, O.

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020 (2006).
[Crossref] [PubMed]

Sturek, M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[Crossref]

Su, J.

Sylvestre, T.

Takeoka, M.

Tang, S.

Tomov, I. V.

Tromberg, B. J.

Tsai, P. S.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156, 351–359 (2006).
[Crossref] [PubMed]

Uchida, A.

Wadsworth, W. J.

Wang, H.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
[Crossref]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
[Crossref] [PubMed]

Wang, H. W.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[Crossref]

Webb, W. W.

Wienigel, M.

Wino-grad, J. M.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Xie, H.

Xie, T.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Xiong, C.

Yan, Y.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
[Crossref]

Yazdanfar, S.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, “Ultrafast optical pulse delivery with fibers for nonlinear mir-coscopy,” Microsc. Res. Tech. 71, 887–896 (2008).
[Crossref] [PubMed]

Yu, L.

Zhang, J.

Zimmerley, M.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, “Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy,” Appl. Opt. 48, D79–D87 (2009).
[Crossref]

Zipfel, W. R.

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. (1)

J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Appl. Spectrosc. 91, 197–208 (2007).
[Crossref]

Artherioscler. Thromb. Vasc. Biol. (1)

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy,” Artherioscler. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[Crossref]

IEEE J. Sel. Topics. Quant. Electron. (1)

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel nonlinear optical microscopy and applications to central nervous system,” IEEE J. Sel. Topics. Quant. Electron. 14, 4–9 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. Neurosci. Methods (1)

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156, 351–359 (2006).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, “Ultrafast optical pulse delivery with fibers for nonlinear mir-coscopy,” Microsc. Res. Tech. 71, 887–896 (2008).
[Crossref] [PubMed]

Mol. Imaging (1)

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, “Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma,” Mol. Imaging 6, 205–211 (2007).
[PubMed]

Opt Lett. (1)

W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P. Barretto, J.C. Jung, H. Ra, O. Solgaard, and M.J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt Lett. 34, 2309–2311 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (7)

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett. 33, 1324–1326 (2008).
[Crossref] [PubMed]

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, “Rotational multiphoton endoscopy with a 1 μm fiber laser system,” Opt. Lett. 34, 2249–2252 (2009).
[Crossref] [PubMed]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser.,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020 (2006).
[Crossref] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27, 1513–1515 (2002).
[Crossref]

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber ” Opt. Lett. 29, 1285–1287 (2004).
[Crossref] [PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber,” Opt. Lett. 31, 1417–1419 (2006).
[Crossref] [PubMed]

Plastic and Reconstructive Surgery (1)

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Wino-grad, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plastic and Reconstructive Surgery 123, 123S–130S (2009).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber-delivered probe for CARS tissue imaging: M-mirrors; D1- 1000 nm longpass dichroic mirror; D2- 760 nm longpass dichroic mirror, L-lens; Obj-objective; S-sample; F- 670 nm bandpass filter. Fiber 1 is used for delivery of the excitation pulses and fiber 2 is used for detecting the CARS radiation. The dimensions of the probe are indicated in cm.

Fig. 2.
Fig. 2.

Intensity spectra of the pump beam measured before and after the (a) DCPCF16 fiber (FWHM=9.7 nm before the fiber; FWHM=9.7 nm after the fiber) and (b) the LMA-20 PCF (FWHM=10 nm before the fiber; FWHM=11 nm after the fiber)

Fig. 3.
Fig. 3.

Spectrally-resolved anti-Stokes four-wave-mixing signal measured at the output of (a) the LMA20 fiber (FWHM=7.9 nm) output and (b) the silica SMF (FWHM=8.6 nm).

Fig. 4.
Fig. 4.

CARS signal intensity from the DMSO sample and FWM from the fiber as a function of time delay between the pump and the Stokes beam for the DCPCF16 fiber (a) and the LMA-20 fiber (b).

Fig. 5.
Fig. 5.

CARS images of thick tissue samples ex vivo at 2842 cm-1.a) Small adipocytes of mouse ear skin. b) Adipocytes of subcutaneous layer of rabbit skin tissue. C) Meibomian gland in mouse eyelid. Images were acquired in 2s. Scale bar is 50 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 2 β p β S + β as ) · L = Δβ · L > > π

Metrics