Abstract

We demonstrate a fiber-based probe for maximum collection of the coherent anti-Stokes Raman scattering (CARS) signal in biological tissues. We discuss the design challenges including capturing the back-scattered forward generated CARS signal in the sample and the effects of fiber nonlinearities on the propagating pulses. Three different single mode fibers (fused silica fiber, photonic crystal fiber and double-clad photonic crystal fiber) were tested for the probe design. We investigated self-phase modulation, stimulated Raman scattering (SRS) and four-wave-mixing (FWM) generation in the fiber: nonlinear processes expected to occur in a two-beam excitation based probe. While SPM and SRS induced spectral broadening was negligible, a strong non phase-matched FWM contribution was found to be present in all the tested fibers for excitation conditions relevant to CARS microscopy of tissues. To spectrally suppress this strong contribution, the probe design incorporates separate fibers for excitation light delivery and for signal detection, in combination with dichroic optics. CARS images of the samples were recorded by collecting the back-scattered forward generated CARS signal in the sample through a multi-mode fiber. Different biological tissues were imaged ex vivo in order to assess the performance of our fiber-delivered probe for CARS imaging, a tool which we consider an important advance towards label-free, in vivo probing of superficial tissues.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng, "Coherent anti-Stokes Raman scattering microscopy," Appl. Spectrosc. 91, 197-208 (2007).
    [CrossRef]
  2. C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
    [CrossRef]
  3. F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
    [CrossRef]
  4. T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
    [CrossRef]
  5. T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
    [PubMed]
  6. H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
    [CrossRef]
  7. M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
    [CrossRef]
  8. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
    [CrossRef] [PubMed]
  9. W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
    [CrossRef] [PubMed]
  10. G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
    [CrossRef] [PubMed]
  11. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
    [CrossRef] [PubMed]
  12. R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
    [CrossRef]
  13. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
    [CrossRef] [PubMed]
  14. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
    [CrossRef] [PubMed]
  15. H. Wang, T. B. Huff, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
    [CrossRef] [PubMed]
  16. Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, "MPScope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006).
    [CrossRef] [PubMed]
  17. E. R. Andresen, S. R. Keiding, and E. O. Potma, "Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy," Opt. Express 14, 7246-7251 (2006).
    [CrossRef] [PubMed]
  18. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
    [CrossRef]
  19. W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber " Opt. Lett. 29, 1285-1287 (2004).
    [CrossRef] [PubMed]
  20. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2008).
    [CrossRef]
  21. D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
    [CrossRef] [PubMed]
  22. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
    [CrossRef] [PubMed]
  23. A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
    [CrossRef]
  24. C. Xiong, Z. Chen, and W. J. Wadsworth, "Dual-wavelength-pumped supercontinuum generation in an all-fiber device," J. Lightwave Technol. 27, 1638-1643 (2009).
    [CrossRef]
  25. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
    [CrossRef] [PubMed]
  26. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
    [CrossRef] [PubMed]
  27. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
    [CrossRef] [PubMed]

2009

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
[CrossRef]

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
[CrossRef]

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

C. Xiong, Z. Chen, and W. J. Wadsworth, "Dual-wavelength-pumped supercontinuum generation in an all-fiber device," J. Lightwave Technol. 27, 1638-1643 (2009).
[CrossRef]

2008

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2008).
[CrossRef]

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
[CrossRef] [PubMed]

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

2007

J. X. Cheng, "Coherent anti-Stokes Raman scattering microscopy," Appl. Spectrosc. 91, 197-208 (2007).
[CrossRef]

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

2006

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
[CrossRef] [PubMed]

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, "MPScope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006).
[CrossRef] [PubMed]

E. R. Andresen, S. R. Keiding, and E. O. Potma, "Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy," Opt. Express 14, 7246-7251 (2006).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

2005

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

2004

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber " Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

2003

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

2002

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

1998

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
[CrossRef]

Ahn, Y. C.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Andresen, E. R.

E. R. Andresen, S. R. Keiding, and E. O. Potma, "Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy," Opt. Express 14, 7246-7251 (2006).
[CrossRef] [PubMed]

Barretto, R. P.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

Barretto, R. P. J.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Burns, L. D.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

Camarillo, I. G.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

Chen, Z.

C. Xiong, Z. Chen, and W. J. Wadsworth, "Dual-wavelength-pumped supercontinuum generation in an all-fiber device," J. Lightwave Technol. 27, 1638-1643 (2009).
[CrossRef]

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Cheng, J. X.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
[CrossRef]

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

J. X. Cheng, "Coherent anti-Stokes Raman scattering microscopy," Appl. Spectrosc. 91, 197-208 (2007).
[CrossRef]

H. Wang, T. B. Huff, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
[CrossRef] [PubMed]

Choi, B.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
[CrossRef]

Choi, H.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
[CrossRef] [PubMed]

Choi, H. Y.

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

Choi, W. J.

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

Cocker, E. D.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Cote, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Côté, D.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Cranfield, C.

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Engelbrecht, C. J.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Flusberg, B. A.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Foster, M. A.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Fu, L.

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2008).
[CrossRef]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Gan, X.

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2008).
[CrossRef]

Ganikhanov, F.

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

Göbel, W.

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber " Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

Gu, M.

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2008).
[CrossRef]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Helmchen, F.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber " Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

Henry, F.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Huff, T. B.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
[CrossRef] [PubMed]

Jain, A.

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Johnston, R. S.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

Jung, J.C.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

Jung, W.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Kannari, F.

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
[CrossRef]

Keiding, S. R.

E. R. Andresen, S. R. Keiding, and E. O. Potma, "Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy," Opt. Express 14, 7246-7251 (2006).
[CrossRef] [PubMed]

Kim, D.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
[CrossRef] [PubMed]

Kleinfeld, D.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, "MPScope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006).
[CrossRef] [PubMed]

Ko, T. H.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Kochevar, I. E.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

König, K.

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

Krasieva, T. B.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Langohr, I. M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
[CrossRef]

Le, T. T.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

Lee, B. H.

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

Lee, D. S.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Légaré, F.

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

LeHarzic, R.

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

Lin, C.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Lin, C. P.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Liu, G.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

McClure, R. A.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
[CrossRef]

McCormic, D. T.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Messerschmidt, B.

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

Moll, K. D.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Mussot, A.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

Na, J.

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

Nakata, T.

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
[CrossRef]

Nguyen, Q. T.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, "MPScope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006).
[CrossRef] [PubMed]

Nichols, M. B.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

Nimmerjahn, A.

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber " Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Piyawattanametha, W.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Potma, E. O.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
[CrossRef]

E. R. Andresen, S. R. Keiding, and E. O. Potma, "Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy," Opt. Express 14, 7246-7251 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Provino, L.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Ra, H.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

Ra, H. J.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Randolph, M. A.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Redmond, R. W.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Rehrer, C. W.

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

Riemann, I.

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

Rust, E. A. Z.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Ryu, S. Y.

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

Schnitzer, M. J.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Seibel, E. J.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

Shi, Y.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

So, P. T. C.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
[CrossRef] [PubMed]

Solgaard, O.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

Sturek, M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
[CrossRef]

Su, J.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

Sylvestre, T.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

Takeoka, M.

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
[CrossRef]

Tang, S.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Tomov, I. V.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Tromberg, B. J.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Tsai, P. S.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, "MPScope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006).
[CrossRef] [PubMed]

Uchida, A.

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
[CrossRef]

Wadsworth, W. J.

C. Xiong, Z. Chen, and W. J. Wadsworth, "Dual-wavelength-pumped supercontinuum generation in an all-fiber device," J. Lightwave Technol. 27, 1638-1643 (2009).
[CrossRef]

Wang, H.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

H. Wang, T. B. Huff, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
[CrossRef] [PubMed]

Wang, H. W.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
[CrossRef]

Webb, W. W.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Wienigel, M.

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

Winograd, J. M.

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Xie, H.

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Xie, T.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Xiong, C.

C. Xiong, Z. Chen, and W. J. Wadsworth, "Dual-wavelength-pumped supercontinuum generation in an all-fiber device," J. Lightwave Technol. 27, 1638-1643 (2009).
[CrossRef]

Yan, Y.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

Yazdanfar, S.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
[CrossRef] [PubMed]

Yu, L.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

Zhang, J.

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

Zimmerley, M.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
[CrossRef]

Zipfel, W. R.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

Annu. Rev. Anal. Chem.

C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[CrossRef]

Appl. Opt.

M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, "Following dimethyl sulfoxide skin optical clearing with quantitative nonlinear mulimodal microscopy," Appl. Opt. 48, D79-D87 (2009).
[CrossRef]

R. LeHarzic, I. Riemann, M. Wienigel, K. König, and B. Messerschmidt, "Rigid and high-numerical-aperture two-photon fluorescence endoscope,"Appl. Opt. 48, 3396-3400 (2009).
[CrossRef]

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1517 (2008).
[CrossRef] [PubMed]

Appl. Spectrosc.

J. X. Cheng, "Coherent anti-Stokes Raman scattering microscopy," Appl. Spectrosc. 91, 197-208 (2007).
[CrossRef]

Artherioscler. Thromb. Vasc. Biol.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative ananlysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy," Artherioscler. Thromb. Vasc. Biol. 29, 1342-1342 (2009).
[CrossRef]

IEEE J. Sel. Tops. Quantum Electron.

T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, "Multimodel nonlinear optical microscopy and applications to central nervous system," IEEE J. Sel. Tops. Quantum Electron. 14, 4-9 (2008).
[CrossRef]

J. Lightwave Technol.

A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, "Wide-range all-optical wavelength conversion using dualwavelength-pumped fiber Raman converter," J. Lightwave Technol. 16, 92-99 (1998).
[CrossRef]

C. Xiong, Z. Chen, and W. J. Wadsworth, "Dual-wavelength-pumped supercontinuum generation in an all-fiber device," J. Lightwave Technol. 27, 1638-1643 (2009).
[CrossRef]

J. Neurosci. Methods

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, "MPScope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006).
[CrossRef] [PubMed]

Microsc. Res. Tech.

D. Kim, H. Choi, S. Yazdanfar, and P. T. C. So, "Ultrafast optical pulse delivery with fibers for nonlinear mircoscopy," Microsc. Res. Tech. 71, 887-896 (2008).
[CrossRef] [PubMed]

Mol. Imaging

T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Mol. Imaging 6, 205-211 (2007).
[PubMed]

Opt Lett.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J.C. Jung, H. Ra, O. Solgaard, M. J. Schnitzer, "In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror," Opt Lett. 34, 2309-2311 (2009).
[CrossRef] [PubMed]

Opt. Express

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

E. R. Andresen, S. R. Keiding, and E. O. Potma, "Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy," Opt. Express 14, 7246-7251 (2006).
[CrossRef] [PubMed]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2008).
[CrossRef]

Opt. Lett.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, "Miniaturized probe based on microelectromechanical system mirror for multiphoton microscopy," Opt. Lett. 33, 1324-1326 (2008).
[CrossRef] [PubMed]

G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, "Rotational multiphoton endoscopy with a 1 μm fiber laser system," Opt. Lett. 34, 2249-2252 (2009).
[CrossRef] [PubMed]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by used of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging system based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[CrossRef]

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a To:sapphire laser through a hollow-core photonic crystal fiber " Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber," Opt. Lett. 31, 1417-1419 (2006).
[CrossRef] [PubMed]

Plastic and Reconstructive Surgery

F. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, "Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy," Plastic and Reconstructive Surgery 123, 123S-130S (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber-delivered probe for CARS tissue imaging: M-mirrors; D1- 1000 nm longpass dichroic mirror; D2- 760 nm longpass dichroic mirror, L-lens; Obj-objective; S-sample; F- 670 nm bandpass filter. Fiber 1 is used for delivery of the excitation pulses and fiber 2 is used for detecting the CARS radiation. The dimensions of the probe are indicated in cm.

Fig. 2.
Fig. 2.

Intensity spectra of the pump beam measured before and after the (a) DCPCF16 fiber (FWHM=9.7 nm before the fiber; FWHM=9.7 nm after the fiber) and (b) the LMA-20 PCF (FWHM=10 nm before the fiber; FWHM=11 nm after the fiber)

Fig. 3.
Fig. 3.

Spectrally-resolved anti-Stokes four-wave-mixing signal measured at the output of (a) the LMA20 fiber (FWHM=7.9 nm) output and (b) the silica SMF (FWHM=8.6 nm).

Fig. 4.
Fig. 4.

CARS signal intensity from the DMSO sample and FWM from the fiber as a function of time delay between the pump and the Stokes beam for the DCPCF16 fiber (a) and the LMA-20 fiber (b).

Fig. 5.
Fig. 5.

CARS images of thick tissue samples ex vivo at 2842 cm-1.a) Small adipocytes of mouse ear skin. b) Adipocytes of subcutaneous layer of rabbit skin tissue. C) Meibomian gland in mouse eyelid. Images were acquired in 2s. Scale bar is 50 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 2 β p β S + β as ) · L = Δβ · L > > π

Metrics