Abstract

In this paper we present the fabrication process and tests of two different types of l = 2 spiral phase plates (SPPs), designed for an Optical Vortex Coronagraph (OVC) in the visible wavelength regime. Each phase mask is realized dividing the spirals area in sectors respectively of 8 and 512 of levels using lithographic nanofabrication approach. The SPPs produces different optical vortices (OVs) with topological charge l that depends on the number of steps and on the wavelength. We found that the residual light in the central dark region of the OV tends to zero as the number of steps increases.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
    [CrossRef]
  3. A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002).
    [CrossRef]
  4. G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
    [CrossRef]
  5. M. Harwit, “Photon Orbital Angular Momentum in Astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
    [CrossRef]
  6. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [CrossRef] [PubMed]
  7. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
    [CrossRef] [PubMed]
  8. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
    [CrossRef] [PubMed]
  9. G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
    [CrossRef]
  10. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
    [CrossRef]
  11. E. B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3-4), 261–298 (1997).
    [CrossRef]
  12. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
    [CrossRef]
  13. Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
    [CrossRef] [PubMed]
  14. M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
    [CrossRef]
  15. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
    [CrossRef] [PubMed]
  16. C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
    [CrossRef]
  17. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
    [CrossRef] [PubMed]

2009 (2)

G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
[CrossRef]

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

2008 (1)

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

2007 (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

2006 (4)

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[CrossRef]

G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
[CrossRef] [PubMed]

2005 (3)

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef] [PubMed]

G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

2004 (1)

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Harwit, “Photon Orbital Angular Momentum in Astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
[CrossRef]

2002 (2)

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002).
[CrossRef]

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

1997 (1)

E. B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3-4), 261–298 (1997).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

’t Hooft, G. W.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Absil, O.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Anzolin, G.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
[CrossRef]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

Barbieri, C.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
[CrossRef]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Bianchini, A.

G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
[CrossRef]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

Carozzi, T. D.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Carpentiero, A.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

Ding, J.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[CrossRef]

Eliel, E. R.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Foo, G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef]

Gan, X.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Ganic, D.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Gu, M.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Guo, C.-S.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[CrossRef]

Hain, M.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Han, Y.-J.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[CrossRef]

Harwit, M.

M. Harwit, “Photon Orbital Angular Momentum in Astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
[CrossRef]

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Johnson, E. G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Kley, E. B.

E. B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3-4), 261–298 (1997).
[CrossRef]

Kloosterboer, J. G.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Lee, J. H.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

Mari, E.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

Mawet, D.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

Melli, M.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

Oemrawsingh, S. S. R.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Palacios, D. M.

G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef]

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Prasciolu, M.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

Riaud, P.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

Romanato, F.

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

Shum, P.

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef] [PubMed]

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Somalingam, S.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Stankovic, S.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Sun, X. W.

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef] [PubMed]

Surdej, J.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

Swartzlander, G. A.

G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
[CrossRef] [PubMed]

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef]

Tamburini, F.

G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
[CrossRef]

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Thidé, B.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

Tschudi, T.

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

Umbriaco, G.

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

van Houwelingen, J. A. W.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002).
[CrossRef]

Verstegen, E. J. K.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Wang, Q.

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef] [PubMed]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002).
[CrossRef]

Woerdman, J. P.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Xue, D.-M.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[CrossRef]

Yin, X. J.

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef] [PubMed]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002).
[CrossRef]

Appl. Opt. (1)

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[CrossRef] [PubMed]

Astron. Astrophys. (1)

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with starlight,” Astron. Astrophys. 488(3), 1159–1165 (2008).
[CrossRef]

Astrophys. J. (2)

M. Harwit, “Photon Orbital Angular Momentum in Astrophysics,” Astrophys. J. 597(2), 1266–1270 (2003).
[CrossRef]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular Groove Phase Mask Coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B Quantum Semiclassical Opt. 4(2), 367 (2002).
[CrossRef]

Microelectron. Eng. (2)

E. B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3-4), 261–298 (1997).
[CrossRef]

M. Prasciolu, F. Tamburini, G. Anzolin, E. Mari, M. Melli, A. Carpentiero, C. Barbieri, and F. Romanato, “Fab-rication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography,” Microelectron. Eng. 86(4-6), 1103–1106 (2009).
[CrossRef]

Opt. Commun. (1)

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[CrossRef]

Opt. Express (1)

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
[CrossRef]

G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
[CrossRef] [PubMed]

G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef]

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79(3), 033845 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[CrossRef] [PubMed]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[CrossRef] [PubMed]

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Top panels (1, 2 and 3) N = 8 MLSPP and lower panels (4, 5 and 6) MLSPP with 512 steps. On the left: simulated three-dimensional images (1 and 4), the corresponding phase delay introduced by each single step (2), and that varies continuously as a function of the azimuthal angle (5). On the right are shown SEM images of the actual MLSPPs carved in the PMMA (3 and 6).

Fig. 2
Fig. 2

Maximum efficiencyλfor different MLSPPs. vs. number of steps.

Fig. 3
Fig. 3

Fainting efficiency of the MLSPPs and of the ideal CSPP vs. the wavelength.

Fig. 4
Fig. 4

Schematic diagram of the setup used in laboratory. L1 and L2 are lenses that form a beam expander, L3 focuses light on the center of the SPP.

Fig. 5
Fig. 5

Experimental (A and C) and simulated (B and D) optical vortices obtained using SPP with N = 8 (panel 1) and N = 512 (panel 2). Experimental results are also shown in 3D, where dotted lines indicate the locations of the profiles reported in Fig. 6.

Fig. 6
Fig. 6

The profiles of the OVs shown in Fig. 5.

Tables (1)

Tables Icon

Table 1 Maximum fainting of light passing through the MLSPP and the Lyot stop and the corresponding maximum efficiency wavelength as a function of the wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u l p ( r , θ ) ( r 2 w 0 ) | l | L p | l | ( 2 r 2 w 0 2 ) exp ( r 2 w 0 2 ) exp ( i l θ )
l = Δ n h s / λ 0
λ m i n N = λ m i n + λ m i n / N
l = Δ n   ·   h s λ ( N + 1 N )

Metrics