Abstract

We showed that a Ag-SiO2-Ag Fabry-Pérot cavity can be used in near-field imaging based on omnidirectional resonance tunneling. The omnidirectional resonance was experimentally demonstrated in the Ag-SiO2-Ag resonant cavity working at a wavelength of 365 nm. The resonant cavity lens with high transmittance and high image fidelity was fabricated using standard photolithography method. Grating source with 190 nm line resolution was imaged through the resonant cavity lens with a total thickness of 128 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
    [CrossRef]
  2. P. A. Belov, C. R. Simovski, and P. Ikonen, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77(19), 193108 (2008).
    [CrossRef]
  3. P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
    [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap Plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [CrossRef]
  5. J. S. Q. Liu and M. L. Brongersma, “Omnidirectional light emission via surface Plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
    [CrossRef]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  7. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  8. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  9. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  10. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
    [CrossRef] [PubMed]
  11. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  12. C. T. Jensen Li, Chan, “Imaging using nano metallic films: from evanescent wave lens to resonant tunneling lens,” arXiv:physics, 0701172 (2007).
  13. J. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  14. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  15. S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  16. C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
    [CrossRef]
  17. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
    [CrossRef]

2008 (3)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77(19), 193108 (2008).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef]

2007 (3)

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

J. S. Q. Liu and M. L. Brongersma, “Omnidirectional light emission via surface Plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

2006 (2)

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap Plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

2004 (1)

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

2003 (1)

S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

1972 (1)

J. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Akozbek, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

Alomainy, A.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

Arnold, P. J.

C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef]

Belov, P. A.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77(19), 193108 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

Blaikie, R. J.

C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

Bloemer, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

Bones, M. D.

C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef]

Brongersma, M. L.

J. S. Q. Liu and M. L. Brongersma, “Omnidirectional light emission via surface Plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

Christy, R. W.

J. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

D’Aguanno, G.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Fan, S.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap Plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

Hao, Y.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

Ikonen, P.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77(19), 193108 (2008).
[CrossRef]

Johnson, J. B.

J. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kwok, C. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Lai, H. M.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Liu, J. S. Q.

J. S. Q. Liu and M. L. Brongersma, “Omnidirectional light emission via surface Plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Loo, Y. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Mattiucci, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

Melville, D. O. S.

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

Moore, C. P.

C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap Plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Scalora, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

Shin, H.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

Simovski, C. R.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77(19), 193108 (2008).
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Sudhakaran, S.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wiltshire, M. C.

S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Xu, B. Y.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Yanik, M. F.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, Y.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

Zia, R.

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap Plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

J. S. Q. Liu and M. L. Brongersma, “Omnidirectional light emission via surface Plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, “Omnidirectional resonsnce in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84(22), 4421–4423 (2004).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. Opt. Soc. Am. A (1)

C. P. Moore, M. D. Bones, P. J. Arnold, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef]

Nano Lett. (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77(19), 193108 (2008).
[CrossRef]

J. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7330–7339 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (1)

C. T. Jensen Li, Chan, “Imaging using nano metallic films: from evanescent wave lens to resonant tunneling lens,” arXiv:physics, 0701172 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated transmittance and transmission phase shift spectra of the resonant cavity lens for different angles of incidence. The theoretical design neglects material absorption of Ag and each Ag / SiO2 layers has a thickness of 45.8 nm/61.7 nm.

Fig. 2
Fig. 2

Transfer amplitude as a function of the transverse wavenumber kx (normalized to k0, the wavenumber in vacuum) for the design in Fig. 1 without/with absorption in blue/red color. The corresponding case for a multilayer silver lens with the same total thickness is also shown in green color for comparison. Inset: image of a line source with a line width 0.34λ.

Fig. 3
Fig. 3

Schematic diagram (not drawn to scale) of the resonant cavity lens, standard photolithography method is used to record the image collected by the FP resonant cavity lens.

Fig. 4
Fig. 4

(a) The experimental angle resolved transmission of TM modes in the resonant cavity lens; (b) is for TE modes.

Fig. 5
Fig. 5

(a) Atomic force microscope image is recorded by the FP resonant cavity lens from a source grating of 380nm in period; (b) Results from Ag-SiO2 multilayer superlens; (c) In the control experiment, the FP resonant cavity lens is replaced with the 128 nm thick PMMA. (d), (e) and (f) are the corresponding results of cross section analysis. (g), (h) and (i) are the Fourier-transformed spectrum of (d), (e) and (f), red arrows indicate the periods of ~380 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε m = 1.0914 ε d ,
d m = 0.19 λ / ε d , d d = 0.256 λ / ε d .
2 ( arg ( t m ) + ϕ d ) = π ,
2 ( arg ( r m ) + ϕ d ) = 2 π ,

Metrics