Abstract

Mesa-structuring of InGaAs/InAlAs photoconductive layers is performed employing a chemical assisted ion beam etching (CAIBE) process. Terahertz photoconductive antennas for 1.5 µm operation are fabricated and evaluated in a time domain spectrometer. Order-of-magnitude improvements versus planar antennas are demonstrated in terms of emitter power, dark current and receiver sensitivity.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell
Opt. Express 16(13) 9565-9570 (2008)

Continuous wave terahertz systems exploiting 1.5 µm telecom technologies

B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell
Opt. Express 17(17) 15001-15007 (2009)

THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions

Roman J. B. Dietz, Marina Gerhard, Dennis Stanze, Martin Koch, Bernd Sartorius, and Martin Schell
Opt. Express 19(27) 25911-25917 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005).
    [Crossref]
  2. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
    [Crossref]
  3. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref] [PubMed]
  4. E. R. Brown, “A photoconductive model for superior GaAs THz photomixers,” Appl. Phys. Lett. 75(6), 769 (1999).
    [Crossref]
  5. L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
    [Crossref]

2008 (1)

2005 (2)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005).
[Crossref]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

2001 (1)

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[Crossref]

1999 (1)

E. R. Brown, “A photoconductive model for superior GaAs THz photomixers,” Appl. Phys. Lett. 75(6), 769 (1999).
[Crossref]

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Böttcher, J.

Brown, E. R.

E. R. Brown, “A photoconductive model for superior GaAs THz photomixers,” Appl. Phys. Lett. 75(6), 769 (1999).
[Crossref]

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Coutaz, J.-L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[Crossref]

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[Crossref]

Garet, F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[Crossref]

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Künzel, H.

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

Roehle, H.

Roux, J.-F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[Crossref]

Sartorius, B.

Schell, M.

Schlak, M.

Stanze, D.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005).
[Crossref]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005).
[Crossref]

Venghaus, H.

Appl. Phys. Lett. (3)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005).
[Crossref]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[Crossref]

E. R. Brown, “A photoconductive model for superior GaAs THz photomixers,” Appl. Phys. Lett. 75(6), 769 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7(4), 615–623 (2001).
[Crossref]

Opt. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Planar (a, b) versus mesa (c, d) structured antennas. Side view (a, c) and top view (b, d)

Fig. 2
Fig. 2

(a) Scheme of the CAIBE Process, (b) SEM picture of a mesa-structured stripline antenna

Fig. 3
Fig. 3

Comparison of planar versus mesa antennas (dipole 25/10 µm):
dark and photo current: (a) planar antenna (b) mesa antenna 
planar and mesa structure: (c) dark current (d) photo current at 10 mW minus dark current

Fig. 4
Fig. 4

THz output power measured with a Golay cell in dependence
(a) on bias voltage, at 40 mW optical power, and (b) on optical power, at 14 V bias voltage

Fig. 5
Fig. 5

Scheme of the THz Time Domain System

Fig. 6
Fig. 6

Detected TD signal traces applying mesa antennas versus planar antennas:
(a) mesa emitter, (b) mesa receiver, (c) mesa system, (d) FFT spectrum of mesa system

Metrics