Abstract

Spectral power distribution of trichromatic clusters of light-emitting diodes (LEDs) was optimized for rendering the highest number of colors with a perceptually noticeable gain in chroma (color saturation) out of 1269 Munsell samples. The basic tradeoffs of the number of colors rendered with increased saturation with the number of colors rendered with high fidelity and with luminous efficacy of radiation were established. High-saturation RGB clusters composed of commercially available AlGaInP and InGaN LEDs were modeled for a standard set of correlated color temperatures and the stability of the color saturation ability of the clusters against the drift of peak wavelengths was investigated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, 1995.
  2. Commission Internationale de l’Eclairage, “Colour rendering of white LED sources,” Pub. CIE 177, 2007.
  3. W. Davis, and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 59411G1–8 (2005).
  4. D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).
  5. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
    [CrossRef] [PubMed]
  6. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).
  7. S. M. Aston and H. E. Belichambers,, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
    [CrossRef]
  8. K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
    [CrossRef]
  9. H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73(12), 1709–1713 (1983).
    [CrossRef] [PubMed]
  10. Y. Nakano, H. Tahara, H. Suehara, J. Kohda, and T. Yano, “Application of multispectral camera to color rendering simulator,” in Proceedings of AIC Colour 05 − 10th Congress of the International Colour Association (Granada, Spain, 2005), pp. 1625–1628.
  11. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
    [CrossRef]
  12. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
    [CrossRef]
  13. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
    [CrossRef]
  14. A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002).
  15. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
    [CrossRef]
  16. M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
    [CrossRef]
  17. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  18. P. J. Bouma, ““The colour reproduction of incandescent lamps and ‘Philiphan’ glass,” Philips’,” Technol. Rev. 3, 47–49 (1938).
  19. J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments,” Vision Res. 16(5), 445–458 (1976).
    [CrossRef] [PubMed]
  20. J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
    [CrossRef]
  21. N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
    [CrossRef]
  22. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [CrossRef]
  23. Spectral Database, University of Joensuu Color Group., Available: http://spectral.joensuu.fi/ .
  24. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
    [CrossRef]
  25. Specifications for the Chromaticity of Solid State Lighting Products, ANSI Standard C78.377–2008.
  26. G. Wyszecki, and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae, (Wiley, New York, 2000).
  27. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
    [CrossRef]
  28. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
    [CrossRef]
  29. A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
    [CrossRef]

2009 (1)

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

2008 (2)

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

2007 (1)

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

2005 (3)

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

2003 (1)

J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

2002 (3)

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

2001 (1)

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

1994 (1)

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

1983 (1)

H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73(12), 1709–1713 (1983).
[CrossRef] [PubMed]

1976 (1)

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments,” Vision Res. 16(5), 445–458 (1976).
[CrossRef] [PubMed]

1974 (1)

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

1972 (1)

W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
[CrossRef] [PubMed]

1969 (1)

S. M. Aston and H. E. Belichambers,, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

1967 (1)

D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

1942 (1)

D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
[CrossRef]

1938 (1)

P. J. Bouma, ““The colour reproduction of incandescent lamps and ‘Philiphan’ glass,” Philips’,” Technol. Rev. 3, 47–49 (1938).

Aston, S. M.

S. M. Aston and H. E. Belichambers,, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

Belichambers, H. E.

S. M. Aston and H. E. Belichambers,, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Bouma, P. J.

P. J. Bouma, ““The colour reproduction of incandescent lamps and ‘Philiphan’ glass,” Philips’,” Technol. Rev. 3, 47–49 (1938).

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Deng, L.

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

Gaska, R.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

Hashimoto, K.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Ivanauskas, F.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

Judd, D. B.

D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

MacAdam, D. L.

D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
[CrossRef]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

McCann, J. J.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments,” Vision Res. 16(5), 445–458 (1976).
[CrossRef] [PubMed]

McKee, S. P.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments,” Vision Res. 16(5), 445–458 (1976).
[CrossRef] [PubMed]

Narendran, N.

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Nayatani, Y.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Ohno, Y.

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

Rea, M. S.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Shimizu, M.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Shur, M.

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

Shur, M. S.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Taylor, T. H.

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments,” Vision Res. 16(5), 445–458 (1976).
[CrossRef] [PubMed]

Thornton, W. A.

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
[CrossRef] [PubMed]

Vaicekauskas, R.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

Vaitkevicius, H.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Vitta, P.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

Worthey, J. A.

J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

Xu, H.

H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73(12), 1709–1713 (1983).
[CrossRef] [PubMed]

Yano, T.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Žukauskas, A.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Color Res. Appl. (4)

J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[CrossRef]

Illum. Eng. (1)

D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

J. Illum. Eng. Soc. (1)

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

J. Opt. Soc. Am. (3)

H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73(12), 1709–1713 (1983).
[CrossRef] [PubMed]

W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
[CrossRef] [PubMed]

D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
[CrossRef]

Lighting Res. Tech. (1)

S. M. Aston and H. E. Belichambers,, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

Opt. Eng. (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

Proc. IEEE (1)

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

Proc. SPIE (2)

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

A. Žukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148–155 (2001).
[CrossRef]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Technol. Rev. (1)

P. J. Bouma, ““The colour reproduction of incandescent lamps and ‘Philiphan’ glass,” Philips’,” Technol. Rev. 3, 47–49 (1938).

Vision Res. (1)

J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments,” Vision Res. 16(5), 445–458 (1976).
[CrossRef] [PubMed]

Other (8)

A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002).

Y. Nakano, H. Tahara, H. Suehara, J. Kohda, and T. Yano, “Application of multispectral camera to color rendering simulator,” in Proceedings of AIC Colour 05 − 10th Congress of the International Colour Association (Granada, Spain, 2005), pp. 1625–1628.

Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, 1995.

Commission Internationale de l’Eclairage, “Colour rendering of white LED sources,” Pub. CIE 177, 2007.

W. Davis, and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 59411G1–8 (2005).

Specifications for the Chromaticity of Solid State Lighting Products, ANSI Standard C78.377–2008.

G. Wyszecki, and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae, (Wiley, New York, 2000).

Spectral Database, University of Joensuu Color Group., Available: http://spectral.joensuu.fi/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Color-quality indices of trichromatic sources of light as functions of bandwidth (FWHM) of the primary emissions with the peak wavelengths of 630 nm, 530 nm, and 450 nm. Solid lines, color saturation index (CSI); dashed lines, color fidelity index (CFI); dotted lines, hue distortion index (HDI); dash-dotted lines, luminous efficacy of radiation (LER). Pink lines, CCT = 3000 K; violet lines, CCT = 6500 K.

Fig. 2
Fig. 2

(a) Maximized color saturation index as a function of luminous efficacy of radiation (LER) for a trichromatic illuminant with the bandwidth of the primary emissions of 30 nm. (b) Peak wavelengths of the primary emissions as functions of LER. Solid points, CCT = 3000 K; open points, CCT = 6500 K.

Fig. 3
Fig. 3

(a) Maximized color saturation index as a function of color fidelity index (CFI) for a trichromatic illuminant with the bandwidth (FWHM) of primary emissions of 30 nm. (b) Peak wavelengths of the primary emissions as functions of CFI. Solid points, CCT = 3000 K; open points, CCT = 6500 K.

Fig. 4
Fig. 4

(a) Color quality indices (filled points) and luminous efficacy of radiation (open points) of a trichromatic cluster composed of commercially available red 627-nm, green 519-nm, and blue 442-nm LEDs as functions of correlated color temperature (CCT). (b) Fractional radiant fluxes of the primary LEDs as functions of CCT. (c)−(j) Spectral power distributions of the trichromatic cluster for a set of CCTs specified by the ANSI standard [25].

Fig. 5
Fig. 5

Effect of shifting the peak wavelength on color quality of trichromatic LED clusters composed of commercially available red, green, and blue LEDs (vertical lines designate the initial peak wavelengths of 627 nm, 519 nm, and 442 nm, respectively). Bold lines, color saturation index; thin lines, color fidelity index. Solid and dashed lines stand for correlated color temperature of 3000 K and 6500 K, respectively.

Tables (1)

Tables Icon

Table 1 Parameters of high-saturation RGB clusters composed of commercially available LEDs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LER = 683 lm/W × 380 nm 780 nm S ( λ ) V ( λ ) d λ / 0 S ( λ ) d λ ,
F σ ( λ 1 , λ 2 , λ 3 , Φ 1 , Φ 2 , Φ 3 ) = σ × CSI + ( 1 σ ) P ,
η υ = LER × i = 1 3 Φ i / i = 1 3 Φ i / η e i ,

Metrics