Abstract

Computer controlled optical surfacing (CCOS) relies on a stable and predictable tool influence function (TIF), which is the shape of the wear function created by the machine. For a polishing lap, which is stroked on the surface, both the TIF stability and surface finish rely on the polishing interface maintaining intimate contact with the workpiece. Pitch tools serve this function for surfaces that are near spherical, where the curvature has small variation across the part. The rigidity of such tools provides natural smoothing of the surface, but limits the application for aspheric surfaces. Highly flexible tools, such as those created with an air bonnet or magnetorheological fluid, conform to the surface, but lack intrinsic stiffness, so they provide little natural smoothing. We present a rigid conformal polishing tool that uses a non-linear visco-elastic medium (i.e. non-Newtonian fluid) that conforms to the aspheric shape, yet maintains stability to provide natural smoothing. The analysis, design, and performance of such a polishing tool is presented, showing TIF stability of <10% and providing surface finish with <10Å roughness.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Jones, “Computer control for grinding and polishing,” Photon. Spectra, 34–39 (1963).
  2. R. E. Wagner and R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,” Appl. Opt. 13(7), 1683–1689 (1974).
    [CrossRef]
  3. R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 236–240 (1983).
  4. D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).
  5. H. M. Pollicove, E. M. Fess, and J. M. Schoen, “Deterministic manufacturing processes for precision optical surfaces,” in Window and Dome Technologies VIII, R. W. Tustison, eds., Proc. SPIE 5078, 90–96 (2003).
  6. J. H. Burge, S. Benjamin, D. Caywood, C. Noble, M. Novak, C. Oh, R. Parks, B. Smith, P. Su, M. Valente, and C. Zhao, “Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces,” in Optical Manufacturing and Testing VIII, J. H. Burge; O. W. Fähnle and R. Williamson, eds., Proc. SPIE 7426, 74260L1–12 (2009).
  7. C. L. Carnal, C. M. Egert, and K. W. Hylton, “Advanced matrix-based algorithms for ion beam milling of optical components,” in Current Developments in Optical Design and Optical Engineering II, R. E. Fischer and W. J. Smith, eds., Proc. SPIE 1752, 54–62 (1992).
  8. H. Lee and M. Yang, “Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold,” Opt. Eng. 40(9), 1936–1943 (2001).
    [CrossRef]
  9. D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009).
    [CrossRef]
  10. M. T. Tuell, “Novel tooling for production of aspheric surfaces,” M.S. Thesis (2002).
  11. R. P. Chhabra, and J. F. Richardson, Non-Newtonian Flow and Applied Rheology (2nd edition) (Elsevier Ltd, 2008), Chap. 1.
  12. B. C. Don Loomis, Crawford, Norm Schenck, and Bill Anderson, Optical Engineering and Fabrication Facility, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, (personal communication, 2009).
  13. M. A. Meyers, and K. K. Chawla, Mechanical Behavior of Materials (2nd edition) (Cambridge University Press, 2009), 124–125.
  14. A. C. Fischer-Cripps, “Multiple-frequency dynamic nanoindentation testing,” J. Mater. Res. 19(10), 2981–2988 (2004).
    [CrossRef]
  15. M. Johns, “The Giant Magellan Telescope (GMT),” in Extremely Large Telescopes: Which Wavelengths? T. E. Andersen, eds., Proc. SPIE 6986, 698603 1–12 (2008).
  16. H. M. Martin, D. S. Anderson, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8-m f/1 mirror,” in Advanced Technology Optical Telescopes IV, L. D. Barr, eds., Proc. SPIE 1236, 682–690 (1990).
  17. D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
    [CrossRef]
  18. D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Edge tool influence function library using the parametric edge model for computer controlled optical surfacing,” in Optical Manufacturing and Testing VIII, J. H. Burge; O. W. Fähnle and R. Williamson, Proc. SPIE 7426, 74260G1–12 (2009).
  19. R. E. Parks, “Alignment of off-axis conic mirrors,” in Optical Fabrication and Testing, OSA Technical Digest Series (Optical Society of America, 1980), paper TuB4.
  20. Bellofram Corporation, “Bellofram rolling diaphragm design manual” (2009), http://www.atcdiversified.com/Diaphragm/PDF/design_manual.pdf .
  21. S. Benjamin, Optical Engineering and Fabrication Facility, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, (personal communication, 2009).
  22. J. H. Burge, College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, AZ 85721, is preparing a manuscript to be called “High speed polishing lap for efficient computer controlled optical surfacing.”
  23. J. Nelson, and G. H. Sanders, “The status of the Thirty Meter Telescope project,” in Ground-based and Airborne Telescopes II, L. M. Stepp and R. Gilmozzi, eds., Proc. SPIE 7012, 70121A1–18 (2008).
  24. A. Heller, “Safe and sustainable energy with LIFE” (2009), https://str.llnl.gov/AprMay09/pdfs/05.09.02.pdf .
  25. D. W. Kim, College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, AZ 85721, and J. H. Burge are preparing a manuscript to be called “Parametric smoothing model for rigid conformal polishing laps that use visco-elastic materials.”

2009

D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009).
[CrossRef]

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
[CrossRef]

2004

A. C. Fischer-Cripps, “Multiple-frequency dynamic nanoindentation testing,” J. Mater. Res. 19(10), 2981–2988 (2004).
[CrossRef]

2003

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

2001

H. Lee and M. Yang, “Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold,” Opt. Eng. 40(9), 1936–1943 (2001).
[CrossRef]

1983

R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 236–240 (1983).

1974

R. E. Wagner and R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,” Appl. Opt. 13(7), 1683–1689 (1974).
[CrossRef]

1963

R. A. Jones, “Computer control for grinding and polishing,” Photon. Spectra, 34–39 (1963).

Brooks, D.

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

Burge, J. H.

D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009).
[CrossRef]

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
[CrossRef]

Fischer-Cripps, A. C.

A. C. Fischer-Cripps, “Multiple-frequency dynamic nanoindentation testing,” J. Mater. Res. 19(10), 2981–2988 (2004).
[CrossRef]

Freeman, R.

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

Jones, R. A.

R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 236–240 (1983).

R. A. Jones, “Computer control for grinding and polishing,” Photon. Spectra, 34–39 (1963).

Kim, D. W.

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
[CrossRef]

D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009).
[CrossRef]

Kim, S. W.

D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009).
[CrossRef]

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
[CrossRef]

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

King, A.

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

Lee, H.

H. Lee and M. Yang, “Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold,” Opt. Eng. 40(9), 1936–1943 (2001).
[CrossRef]

McCavana, G.

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

Morton, R.

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

Park, W. H.

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
[CrossRef]

Shannon, R. R.

R. E. Wagner and R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,” Appl. Opt. 13(7), 1683–1689 (1974).
[CrossRef]

Wagner, R. E.

R. E. Wagner and R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,” Appl. Opt. 13(7), 1683–1689 (1974).
[CrossRef]

Walker, D. D.

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

Yang, M.

H. Lee and M. Yang, “Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold,” Opt. Eng. 40(9), 1936–1943 (2001).
[CrossRef]

Appl. Opt.

R. E. Wagner and R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,” Appl. Opt. 13(7), 1683–1689 (1974).
[CrossRef]

J. Mater. Res.

A. C. Fischer-Cripps, “Multiple-frequency dynamic nanoindentation testing,” J. Mater. Res. 19(10), 2981–2988 (2004).
[CrossRef]

Opt. Eng.

R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 236–240 (1983).

H. Lee and M. Yang, “Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold,” Opt. Eng. 40(9), 1936–1943 (2001).
[CrossRef]

Opt. Express

D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009).
[CrossRef]

D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17(7), 5656–5665 (2009).
[CrossRef]

Photon. Spectra

R. A. Jones, “Computer control for grinding and polishing,” Photon. Spectra, 34–39 (1963).

Other

M. Johns, “The Giant Magellan Telescope (GMT),” in Extremely Large Telescopes: Which Wavelengths? T. E. Andersen, eds., Proc. SPIE 6986, 698603 1–12 (2008).

H. M. Martin, D. S. Anderson, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8-m f/1 mirror,” in Advanced Technology Optical Telescopes IV, L. D. Barr, eds., Proc. SPIE 1236, 682–690 (1990).

D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Edge tool influence function library using the parametric edge model for computer controlled optical surfacing,” in Optical Manufacturing and Testing VIII, J. H. Burge; O. W. Fähnle and R. Williamson, Proc. SPIE 7426, 74260G1–12 (2009).

R. E. Parks, “Alignment of off-axis conic mirrors,” in Optical Fabrication and Testing, OSA Technical Digest Series (Optical Society of America, 1980), paper TuB4.

Bellofram Corporation, “Bellofram rolling diaphragm design manual” (2009), http://www.atcdiversified.com/Diaphragm/PDF/design_manual.pdf .

S. Benjamin, Optical Engineering and Fabrication Facility, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, (personal communication, 2009).

J. H. Burge, College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, AZ 85721, is preparing a manuscript to be called “High speed polishing lap for efficient computer controlled optical surfacing.”

J. Nelson, and G. H. Sanders, “The status of the Thirty Meter Telescope project,” in Ground-based and Airborne Telescopes II, L. M. Stepp and R. Gilmozzi, eds., Proc. SPIE 7012, 70121A1–18 (2008).

A. Heller, “Safe and sustainable energy with LIFE” (2009), https://str.llnl.gov/AprMay09/pdfs/05.09.02.pdf .

D. W. Kim, College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, AZ 85721, and J. H. Burge are preparing a manuscript to be called “Parametric smoothing model for rigid conformal polishing laps that use visco-elastic materials.”

H. M. Pollicove, E. M. Fess, and J. M. Schoen, “Deterministic manufacturing processes for precision optical surfaces,” in Window and Dome Technologies VIII, R. W. Tustison, eds., Proc. SPIE 5078, 90–96 (2003).

J. H. Burge, S. Benjamin, D. Caywood, C. Noble, M. Novak, C. Oh, R. Parks, B. Smith, P. Su, M. Valente, and C. Zhao, “Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces,” in Optical Manufacturing and Testing VIII, J. H. Burge; O. W. Fähnle and R. Williamson, eds., Proc. SPIE 7426, 74260L1–12 (2009).

C. L. Carnal, C. M. Egert, and K. W. Hylton, “Advanced matrix-based algorithms for ion beam milling of optical components,” in Current Developments in Optical Design and Optical Engineering II, R. E. Fischer and W. J. Smith, eds., Proc. SPIE 1752, 54–62 (1992).

M. T. Tuell, “Novel tooling for production of aspheric surfaces,” M.S. Thesis (2002).

R. P. Chhabra, and J. F. Richardson, Non-Newtonian Flow and Applied Rheology (2nd edition) (Elsevier Ltd, 2008), Chap. 1.

B. C. Don Loomis, Crawford, Norm Schenck, and Bill Anderson, Optical Engineering and Fabrication Facility, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, (personal communication, 2009).

M. A. Meyers, and K. K. Chawla, Mechanical Behavior of Materials (2nd edition) (Cambridge University Press, 2009), 124–125.

Supplementary Material (2)

» Media 1: MPG (3954 KB)     
» Media 2: MPG (2678 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics