Abstract

Laser ablation of Ta plates using nanosecond optical vortex pulses was carried out, for the first time. It was suggested that owing to orbital angular momentum of optical vortex, clearer and smoother processed surfaces were obtained with less ablation threshold fluence, in comparison with the ablation by a nonvortex annular beam modified from a spatially Gaussian beam.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bäuerle, Laser processing and chemistry, 3rd ed., (Springer-Verlag, Berlin, Heidelberg 2000).
  2. J. C. Miller, and R. F. Haglund, Laser ablation and desorption, (San Diego, Academic Press, 1998).
  3. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
    [CrossRef] [PubMed]
  4. P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
    [CrossRef]
  5. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
    [CrossRef]
  6. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
    [CrossRef]
  7. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
    [CrossRef]
  8. S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).
  9. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
    [CrossRef]
  10. C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
  11. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
    [CrossRef]
  12. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [CrossRef] [PubMed]
  13. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  14. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [CrossRef]
  15. M. S. Soskin, and M. V. Vasnetsov, “Optical vortices,” in Progress in Optics, Vol. 42, E. Wolf, ed., (Elsevier, North-Holland, 2001).
  16. M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
    [CrossRef]
  17. J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
    [CrossRef] [PubMed]
  18. J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).
  19. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [CrossRef]
  20. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  21. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  22. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [CrossRef] [PubMed]
  23. F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
    [CrossRef]
  24. L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
    [CrossRef]
  25. L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
    [CrossRef]
  26. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [CrossRef]
  27. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [CrossRef]
  28. G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
    [CrossRef] [PubMed]
  29. N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
    [CrossRef] [PubMed]
  30. K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16(12), 2603–2607 (2006).
    [CrossRef]
  31. S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
    [CrossRef]

2008 (1)

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

2007 (4)

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
[CrossRef]

2006 (4)

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16(12), 2603–2607 (2006).
[CrossRef]

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
[CrossRef] [PubMed]

2005 (3)

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[CrossRef]

2003 (1)

J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).

2001 (3)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

2000 (3)

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
[CrossRef] [PubMed]

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

1996 (2)

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[CrossRef] [PubMed]

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).

1995 (2)

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[CrossRef]

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[CrossRef]

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, S. D.

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
[CrossRef]

Andò, L.

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Arlt, J.

J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Audouard, E.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Barnà, A.

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bergmann, H. W.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).

Bokor, N.

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Borrielli, A.

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Bulgakov, A. V.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

Bulgakova, N. M.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

Caridi, F.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

Chiu, D. T.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Ciavola, G.

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[CrossRef]

Crawford, T. H. R.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[CrossRef]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Edgar, J. S.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Föhl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Fong, C.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Fujii, M.

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Gahagan, K. T.

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[CrossRef] [PubMed]

Gammino, S.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Gower, M. C.

M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
[CrossRef] [PubMed]

Greif, R.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Hamazaki, J.

J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
[CrossRef] [PubMed]

Hartmann, M.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).

Haugen, H. K.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Huber, J. R.

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

Iketaki, Y.

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Jeffries, G. D. M.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Körner, C.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).

Krása, J.

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Kudryashov, S. I.

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
[CrossRef]

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Láska, L.

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Le Harzic, R.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Lyon, K.

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Margarone, D.

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

Mayerhofer, R.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).

Mezzasalma, A. M.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

Mineta, Y.

J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
[CrossRef] [PubMed]

Morita, R.

J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
[CrossRef] [PubMed]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Oka, K.

J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
[CrossRef] [PubMed]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[CrossRef]

Padgett, M. J.

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Paul, S.

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
[CrossRef]

Picciotto, A.

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

Preston, J. S.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[CrossRef]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shelby, J. P.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[CrossRef]

Swartzlander, G. A.

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[CrossRef] [PubMed]

Tan, B.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16(12), 2603–2607 (2006).
[CrossRef]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Torrisi, L.

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Venkatakrishnan, K.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16(12), 2603–2607 (2006).
[CrossRef]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Watanabe, T.

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Weck, A.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

Wilkinson, D. S.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

Willmott, P. R.

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Zhang, N.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zhao, Y.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

,” J. Appl. Phys (1)

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys . 101, 043106–1–8 (2007).

Appl. Phys., A Mater. Sci. Process. (6)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[CrossRef]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, “Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 80, 1589–1593 (2005).
[CrossRef]

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[CrossRef]

F. Czech. J. Phys. (1)

F. Caridi, L. Torrisi, D. Margarone, A. Picciotto, A. M. Mezzasalma, and S. Gammino, “Energy distributions of particles ejected from laser generated pulsed plasmas,” F. Czech. J. Phys. 56(S2), B449–B456 (2006).
[CrossRef]

J. Appl. Phys. (2)

L. Torrisi, F. Caridi, A. Picciotto, D. Margarone, and A. Borrielli, “Particle emission from tantalum plasma produced by 532 nm laser pulse ablation,” J. Appl. Phys. 100(9), 093306 (2006).
[CrossRef]

S. Paul, S. I. Kudryashov, K. Lyon, and S. D. Allen, “Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids,” J. Appl. Phys. 101(4), 043106 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16(12), 2603–2607 (2006).
[CrossRef]

J. Mod. Opt. (1)

J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Nano Lett. (1)

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Opt. Commun. (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

Opt. Express (3)

J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14(18), 8382–8392 (2006).
[CrossRef] [PubMed]

M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
[CrossRef] [PubMed]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express 13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[CrossRef] [PubMed]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition,” Rev. Mod. Phys. 72(1), 315–328 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Torrisi, G. Ciavola, S. Gammino, L. Andò, A. Barnà, L. Láska, and J. Krása, “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Rev. Sci. Instrum. 71(11), 4330–4334 (2000).
[CrossRef]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Other (3)

D. Bäuerle, Laser processing and chemistry, 3rd ed., (Springer-Verlag, Berlin, Heidelberg 2000).

J. C. Miller, and R. F. Haglund, Laser ablation and desorption, (San Diego, Academic Press, 1998).

M. S. Soskin, and M. V. Vasnetsov, “Optical vortices,” in Progress in Optics, Vol. 42, E. Wolf, ed., (Elsevier, North-Holland, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup of laser ablation using OVs. SF is a spatial filter, SPP is a phase plate to generate OVs, L is a convex lens with a focal length of 50 mm. Intensity profile of GB is shown. (b) Intensity profiles of the OV (m = 2), (c) OV (m = 1) on the sample surface. (d) Shearing interference pattern of OV (m = 1) in the Mach-Zehnder configuration. Dotted-circles indicate phase singularities. (e) Experimental setup of laser ablation using NVAB. SNF is spatial notch filter. (f) Intensity profiles of NVAB on the sample surface. (g) Horizontal intensity profiles of the OV (m = 2) and NVAB.

Fig. 2
Fig. 2

Laser microscope images of processed surfaces for (a) the OV with m = 2 (b) OV with m = 1, and (c) NVAB with incident energy of 3 mJ/pulse, respectively. Dotted circles denote debris.

Fig. 3
Fig. 3

Curvature distribution of the relative height h in radial direction for (a) OV with m = 2, (b) OV with m = 1, and (c) NVAB. (d) Cross-section illustration of processed surface along the blue line (x-axis) in the inset of figure.

Fig. 4
Fig. 4

Schematic cross-section of ablated zone with (a) smooth surface, (b) rough surface with low- and high-spatial-frequency undulations, (c) rough surface with high-spatial-frequency undulation, and (d) rough surface with low-spatial-frequency undulation. (a’)-(d’) Corresponding schematic of spatial Fourier distributions for (a)-(d), respectively. Amplitudes at zero-spatial-frequency are excluded.

Fig. 5
Fig. 5

Spatial Fourier spectra for (a) r- and (b) θ-averaged height profiles. Insets of (a) and (b) show r- and θ-averaged height distributions which are along pathways shown by blue lines in the inset images. Red, black, and green lines are spatial frequency spectra and height distributions for OV with m = 2, for NVAB, and GB, respectively.

Fig. 6
Fig. 6

Ablated depth D as a function of incident fluence F. Red triangles and black squares correspond to cases for OV with m = 2 and NVAB, respectively. Blue lines denote fitting curves using the expression of D = ξ ln ( F / F t h ) (see the text).

Metrics