Abstract

High quality (Q ≈ 6 × 105) microdisk resonators are demonstrated in a Si3N4 on SiO2 platform at 652–660 nm with integrated in-plane wrap-around coupling waveguides to enable critical coupling to specific microdisk radial modes. Selective coupling to the first three radial modes with >20dB suppression of the other radial modes is achieved by controlling the wrap-around waveguide width. Advantages of such pulley-coupled microdisk resonators include single mode operation, ease of fabrication due to larger waveguide-resonator gaps, the possibility of resist reflow during the lithography phase to improve microdisk etched surface quality, and the ability to realize highly over-coupled microdisks suitable for low-loss delay lines and add-drop filters.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities." Appl. Opt. 40, 570-582 (2001).
    [CrossRef]
  2. A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  3. F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nat. Methods 5, 591-596 (2008).
    [CrossRef] [PubMed]
  4. T. Barwicz, M. Popovi’c, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis." Opt. Express 12, 1437-1442 (2004).
    [CrossRef] [PubMed]
  5. J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
    [CrossRef]
  6. P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
    [CrossRef]
  7. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007).
    [CrossRef] [PubMed]
  8. D. Jeanmaire and R. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
    [CrossRef]
  9. E. C. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects (Elsevier, 2008).
  10. E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
    [CrossRef]
  11. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
    [CrossRef] [PubMed]
  12. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  13. M. Chin and S. Ho, "Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators," J. Lightwave Technol. 16, 1433-1446 (1998).
    [CrossRef]
  14. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
    [CrossRef] [PubMed]
  15. S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
    [CrossRef]
  16. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, 1999).
    [PubMed]
  17. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]
  18. M. Soltani, "Novel integrated silicon nanophotonic structures using ultra-high Q resonators," Ph.D. thesis, Georgia Institute of Technology (2009).

2009 (1)

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

2005 (1)

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

2004 (1)

T. Barwicz, M. Popovi’c, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis." Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

2001 (1)

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities." Appl. Opt. 40, 570-582 (2001).
[CrossRef]

2000 (2)

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

1999 (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

1998 (1)

M. Chin and S. Ho, "Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators," J. Lightwave Technol. 16, 1433-1446 (1998).
[CrossRef]

1987 (1)

S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
[CrossRef]

1977 (1)

D. Jeanmaire and R. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Absil, P.

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

Adibi, A.

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

Agarwal, A.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Armani, A.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Atabaki, A. H.

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

Barclay, P.

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Barwicz, T.

T. Barwicz, M. Popovi’c, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis." Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

Blair, S.

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities." Appl. Opt. 40, 570-582 (2001).
[CrossRef]

Carlie, N.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Chen, Y.

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities." Appl. Opt. 40, 570-582 (2001).
[CrossRef]

Chin, M.

M. Chin and S. Ho, "Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators," J. Lightwave Technol. 16, 1433-1446 (1998).
[CrossRef]

Chuang, S.

S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
[CrossRef]

Driessen, A.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Fan, S.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Feng, N.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Flagan, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Greve, J.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Haus, H.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Ho, P.

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

Ho, S.

M. Chin and S. Ho, "Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators," J. Lightwave Technol. 16, 1433-1446 (1998).
[CrossRef]

Hryniewicz, J.

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

Hu, J.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Jeanmaire, D.

D. Jeanmaire and R. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Joannopoulos, J.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Khan, M.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kimerling, L.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Klunder, D.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Krioukov, E.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Kulkarni, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Lev, B.

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Little, B.

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

Mabuchi, H.

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Manolatou, C.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Otto, C.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Painter, O.

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Petit, L.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Richardson, K.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Shah Hosseini, E.

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

Soltani, M.

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

Srinivasan, K.

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Vahala, K.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Van Duyne, R.

D. Jeanmaire and R. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Villeneuve, P.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Wilson, R.

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

Yariv, A.

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yegnanarayanan, S.

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities." Appl. Opt. 40, 570-582 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

J. Electroanal. Chem. (1)

D. Jeanmaire and R. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

J. Lightwave Technol. (2)

M. Chin and S. Ho, "Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators," J. Lightwave Technol. 16, 1433-1446 (1998).
[CrossRef]

S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nat. Methods 5, 591-596 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

T. Barwicz, M. Popovi’c, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis." Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

Science (1)

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Talanta (1)

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, 1999).
[PubMed]

M. Soltani, "Novel integrated silicon nanophotonic structures using ultra-high Q resonators," Ph.D. thesis, Georgia Institute of Technology (2009).

E. C. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects (Elsevier, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) The pulley coupling configuration in which the waveguide wraps around the microdisk resonator to increase the effective coupling length. The phase matching to different radial modes of the microdisk is achieved by the choice of the waveguide width. (b) The conventional straight coupling configuration in which the waveguide couples to the microdisk only at a single point. In this configuration the effective interaction length is significantly shorter than the pulley scheme depicted in (a), making the coupling much less sensitive to the phase matching condition. (c) Top view of an SEM image of a waveguide etched on a 200 nm layer of Si3N4 on top of an isolating SiO2 layer on a Si substrate with a 5 minute reflow of the resist. The reflow process leads to smooth but tilted sidewalls. (d) The diagram showing the effect of the reflow process on the waveguide and the microdisk sidewalls.

Fig. 2.
Fig. 2.

The pulley coupling configuration in which the waveguide effectively interacts with the microdisk in the radial region between - θo and θo . Rdisk is the radius of the disk (20 μm in this case), g is the coupling gap between the microdisk and the waveguide, W is the width of the waveguide, and Rwg = Rdisk + g + W/2 is the effective radius of the curved waveguide.

Fig. 3.
Fig. 3.

(a) The normalized transmission spectrum of a 20-micron-radius Si3N4 microdisk side coupled to a waveguide with a single point coupling scheme [see Fig. 1(b)]. The coupling gap is 100 nm and several radial TE modes of the microdisk are excited. The waveguide width is 400 nm. The effective coupling length is about 4 μm. The polarization of the input waveguide is TE. (b) The normalized transmission of the waveguides coupled to the same microdisk as in (a) in the pulley configuration shown in Fig. 1(a). The coupling length is 30 μm and the coupling gap is 400 nm. The waveguide width is 390 nm and only the second radial order mode of the disk is excited. The strict phase matching condition does not allow the other radial modes of the microdisk to have significant coupling to the waveguide.

Fig. 4.
Fig. 4.

(a) The simulated coupling quality factor (Qc ) of a 20 μm radius disk at λ = 650 nm when the waveguide wraps around the disk and the coupling length is 30 μm. As the width of the waveguide is changed, the phase matching condition is met for three different radial order TE modes of the disk. (a) The coupling gap size is g = 400 nm and the phase matching condition is met for the first three orders of the disk when the waveguide width is 470, 390 and 340 nm respectively. (b) The gap size is reduced to g = 200 nm, without changing any other parameter compared to part (a). The coupling is enhanced almost two orders of magnitude for all three modes. As the phase matching condition depends on the radius of the curved waveguide, all microdisk modes are coupled to slightly wider waveguides.

Fig. 5.
Fig. 5.

The normalized 1/Qc of the waveguide-cavity coupling in the pulley configuration as shown in Fig. 1(a). The three curves depict the coupling of the waveguides to each of the three lower radial order TE modes. Each curve is normalized to the best coupling for each mode (occuring at the perfect phase matching condition for each mode). The vertical axis is in dB scale. The requiring tolerance in Qc imposes a certain accuracy requirement on the width of the fabricated waveguides; the required accuracy depends on the length of coupling (l), and the radial order chosen (TE1, TE2, or TE3). When the coupling length is 30 μm and the coupling gap is 400 nm, the 3dB fabrication tolerance of the waveguide width (δW) is ±26, ±16 and ±14 for the three first TE modes (TE1-TE3), respectively.

Fig. 6.
Fig. 6.

The normalized transmission of a single-mode, curved waveguide coupled to a microdisk with radius R = 20μm in the pulley configuration as shown in Fig. 1(a). The coupling length is l = 30 μm, and the coupling gap is 400 nm: (a) coupling to the first order microdisk TE mode with W = 470 nm; and (b) coupling to the second order microdisk TE mode with W = 390 nm. As the waveguide width is reduced, the effective index of the guided mode is reduced, thus higher order resonator modes are phase-matched to the waveguide. (c) The transmission spectrum of the drop port in an add-drop filter with both waveguides being 340 nm wide. Power is transferred to the drop port only when the third radial order TE mode of the microdisk is resonant.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ = θ o θ o [ 4 0 W 0 d ( ε ( r , z ) ε o ) ) E disk · E wg r d r dz ] e d θ ,
ϕ = + β wg R wg θ = + k o n wg R wg θ ,
κ = S θ o θ o e ( k o n wg R wg m ) d θ = 2 θ o S sinc [ ( k o n wg R wg m ) θ o π ] ,

Metrics