Abstract

Optical tweezers have become a powerful tool to explore the viscoelasticity of complex fluids at micrometric scale. In the experiments, the Brownian trajectories of optically confined microparticles are properly analysed to provide the viscous and elastic moduli G′ and G″. Nevertheless, the elastic response of the medium is inherently superimposed on the trap stiffness itself. Usually, this drawback is removed by subtracting the elastic trap contribution from the measured medium response. However, it is clear that when trap and medium elasticity become comparable this procedure is no longer reliable. Still, there exists a wide class of complex fluids that exhibit a low elasticity (diluted biopolymers, Boger fluids, etc) for which alternative experimental approaches would be desirable. Herein we propose a new method based on blinking optical tweezers. It makes use of two independent laser beams: the first is used to trap a single bead while the second one, of very weak power, acts as probe to monitor its position with a quadrant photodiode. The trap laser intensity is modulated on-off: when the laser is off the bead follows a free diffusion trajectory that, hence, leads to an estimation of G′ and G″ free of the influence of the trap. We have successfully applied this technique to highly-diluted hyaluronic acid solutions (c < 0.1 mg/ml) reaching to measure very weak G′ modulus (~ 0.01 Pa) in a wide range of frequencies.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley, New York, 1980).
  2. R. G. Larson, The Structure and Rheology of Complex FLuids (University Press, Oxford, 1999).
  3. Y.-L. Wang and D. E. Discher, "Cell mechanics," Meth Cell Biol 83 (2008).
  4. A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
    [CrossRef] [PubMed]
  5. G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
    [CrossRef]
  6. T. Waigh, "Microrheology of complex fluids," Rep. Prog. Phys. 68, 685-742 (2005).
    [CrossRef]
  7. M. Gardel, M. Valentine, and D. A. Weitz, Microscale Diagnostic Techniques (Springer, Oxford, 2005), chap. Microrheology.
  8. J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
    [CrossRef] [PubMed]
  9. A. Ashkin and J. M. Dziedzic, "Internal cell manipulation using infrared laser traps," Proc Natl Acad Sci USA 86, 7914-8 (1989).
    [CrossRef] [PubMed]
  10. M. Valentine, L. Dewalt, and H. OuYang, "Forces on a colloidal particle in a polymer solution: A study using optical tweezers," J Phys-Condens Mat 8, 9477-9482 (1996).
    [CrossRef]
  11. G. Pesce, A. Sasso, and S. Fusco, "Viscosity measurements on micron-size scale using optical tweezers," Rev. Sci. Inst. 76, 115105 (2005).
    [CrossRef]
  12. A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004).
    [CrossRef]
  13. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
    [CrossRef] [PubMed]
  14. A. Resnick, "Use of optical tweezers for colloid science," J Coll Int Sci 262, 55-59 (2003).
    [CrossRef]
  15. E. Furst, "Applications of laser tweezers in complex fluid rheology," Curr Opin Colloid In 10, 79-86 (2005).
    [CrossRef]
  16. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
    [CrossRef]
  17. G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
    [CrossRef]
  18. J. Crocker, "Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres," J. Chem. Phys. 106, 2837-2840 (1997).
    [CrossRef]
  19. E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
    [CrossRef] [PubMed]
  20. R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
    [CrossRef] [PubMed]
  21. R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
    [CrossRef]
  22. G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
    [CrossRef]
  23. S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).
  24. K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 (2004).
    [CrossRef]
  25. F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
    [CrossRef]
  26. Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J Opt. A-Pure Appl. Opt. 9, S256-S263 (2007).
    [CrossRef]

2009 (3)

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

2008 (1)

Y.-L. Wang and D. E. Discher, "Cell mechanics," Meth Cell Biol 83 (2008).

2007 (5)

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
[CrossRef]

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J Opt. A-Pure Appl. Opt. 9, S256-S263 (2007).
[CrossRef]

2006 (2)

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

2005 (3)

E. Furst, "Applications of laser tweezers in complex fluid rheology," Curr Opin Colloid In 10, 79-86 (2005).
[CrossRef]

T. Waigh, "Microrheology of complex fluids," Rep. Prog. Phys. 68, 685-742 (2005).
[CrossRef]

G. Pesce, A. Sasso, and S. Fusco, "Viscosity measurements on micron-size scale using optical tweezers," Rev. Sci. Inst. 76, 115105 (2005).
[CrossRef]

2004 (3)

A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004).
[CrossRef]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
[CrossRef] [PubMed]

K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 (2004).
[CrossRef]

2003 (1)

A. Resnick, "Use of optical tweezers for colloid science," J Coll Int Sci 262, 55-59 (2003).
[CrossRef]

2000 (1)

E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
[CrossRef] [PubMed]

1997 (2)

J. Crocker, "Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres," J. Chem. Phys. 106, 2837-2840 (1997).
[CrossRef]

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

1996 (1)

M. Valentine, L. Dewalt, and H. OuYang, "Forces on a colloidal particle in a polymer solution: A study using optical tweezers," J Phys-Condens Mat 8, 9477-9482 (1996).
[CrossRef]

1989 (1)

A. Ashkin and J. M. Dziedzic, "Internal cell manipulation using infrared laser traps," Proc Natl Acad Sci USA 86, 7914-8 (1989).
[CrossRef] [PubMed]

Addas, K. M.

K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 (2004).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, "Internal cell manipulation using infrared laser traps," Proc Natl Acad Sci USA 86, 7914-8 (1989).
[CrossRef] [PubMed]

Bausch, A. R.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Bechhoefer, J.

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J Opt. A-Pure Appl. Opt. 9, S256-S263 (2007).
[CrossRef]

Bishop, A.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
[CrossRef] [PubMed]

Borzacchiello, A.

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

Boyce, M. C.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Brau, R. R.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Brenner, M.

E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Buosciolo, A.

A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004).
[CrossRef]

Caporali, A.

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

Castro, C. E.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Cooper, J. M.

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Crocker, J.

J. Crocker, "Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres," J. Chem. Phys. 106, 2837-2840 (1997).
[CrossRef]

Crocker, J. C.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

De Luca, A. C.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Deng, Y.

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J Opt. A-Pure Appl. Opt. 9, S256-S263 (2007).
[CrossRef]

Dewalt, L.

M. Valentine, L. Dewalt, and H. OuYang, "Forces on a colloidal particle in a polymer solution: A study using optical tweezers," J Phys-Condens Mat 8, 9477-9482 (1996).
[CrossRef]

Dholakia, K.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
[CrossRef]

Discher, D. E.

Y.-L. Wang and D. E. Discher, "Cell mechanics," Meth Cell Biol 83 (2008).

Drets, A. M.

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Dufresne, E.

E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, "Internal cell manipulation using infrared laser traps," Proc Natl Acad Sci USA 86, 7914-8 (1989).
[CrossRef] [PubMed]

Ferrer, J. M.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Forde, N. R.

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J Opt. A-Pure Appl. Opt. 9, S256-S263 (2007).
[CrossRef]

Frey, E.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Furst, E.

E. Furst, "Applications of laser tweezers in complex fluid rheology," Curr Opin Colloid In 10, 79-86 (2005).
[CrossRef]

Fusco, S.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

G. Pesce, A. Sasso, and S. Fusco, "Viscosity measurements on micron-size scale using optical tweezers," Rev. Sci. Inst. 76, 115105 (2005).
[CrossRef]

Gardel, M. L.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Geli, M. I.

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Gittes, F.

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

Grier, D.

E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Heckenberg, N.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
[CrossRef] [PubMed]

Hoffman, B. D.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Kamm, R. D.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Kroy, K.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Lang, M. J.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Leach, J.

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Lee, H.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Leonardo, R. D.

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Liu, J.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Luca, A. C. D.

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

MacDonald, M. P.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
[CrossRef]

MacKintosh, F.

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

Matsudaira, P.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Miccio, L.

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

Mushfique, H.

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Netti, P. A.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

Nieminen, T.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
[CrossRef] [PubMed]

Olmsted, P.

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

Padgett, M. J.

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Pesce, G.

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

G. Pesce, A. Sasso, and S. Fusco, "Viscosity measurements on micron-size scale using optical tweezers," Rev. Sci. Inst. 76, 115105 (2005).
[CrossRef]

A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004).
[CrossRef]

Petrov, D.

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Puppo, A.

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

Resnick, A.

A. Resnick, "Use of optical tweezers for colloid science," J Coll Int Sci 262, 55-59 (2003).
[CrossRef]

Rubinsztein-Dunlop, H.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
[CrossRef] [PubMed]

Ruocco, G.

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Rusciano, G.

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Sasso, A.

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

G. Pesce, A. Sasso, and S. Fusco, "Viscosity measurements on micron-size scale using optical tweezers," Rev. Sci. Inst. 76, 115105 (2005).
[CrossRef]

A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004).
[CrossRef]

Schmidt, C.

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

Schmidt, C. F.

K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 (2004).
[CrossRef]

Schnurr, B.

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

Selvaggi, L.

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

Smith, R. L.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
[CrossRef]

Spalding, G. C.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
[CrossRef]

Squires, T.

E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Tam, B. K.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Tang, J. X.

K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 (2004).
[CrossRef]

Tarsa, P. B.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

Valentine, M.

M. Valentine, L. Dewalt, and H. OuYang, "Forces on a colloidal particle in a polymer solution: A study using optical tweezers," J Phys-Condens Mat 8, 9477-9482 (1996).
[CrossRef]

Volpe, G.

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Waigh, T.

T. Waigh, "Microrheology of complex fluids," Rep. Prog. Phys. 68, 685-742 (2005).
[CrossRef]

Wang, Y.-L.

Y.-L. Wang and D. E. Discher, "Cell mechanics," Meth Cell Biol 83 (2008).

Weitz, D. A.

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. Pesce, L. Selvaggi, A. Caporali, A. C. D. Luca, A. Puppo, G. Rusciano, and A. Sasso, "Mechanical changes of living oocytes at maturation investigated by multiple particle tracking," Appl. Phys. Lett. 95, 093702 (2009).
[CrossRef]

Biorheology (1)

S. Fusco, A. Borzacchiello, L. Miccio, G. Pesce, G. Rusciano, A. Sasso, and P. A. Netti, "High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions," Biorheology 44, 403-418 (2007).

Curr Opin Colloid In (1)

E. Furst, "Applications of laser tweezers in complex fluid rheology," Curr Opin Colloid In 10, 79-86 (2005).
[CrossRef]

Europhys. Lett. (1)

G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, and G. Volpe, "Quantitative assessment of non-conservative radiation forces in an optical trap," Europhys. Lett. 86, 38002 (2009).
[CrossRef]

J Coll Int Sci (1)

A. Resnick, "Use of optical tweezers for colloid science," J Coll Int Sci 262, 55-59 (2003).
[CrossRef]

J Opt A-Pure Appl Opt (2)

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, "Passive and active microrheology with optical tweezers," J Opt A-Pure Appl Opt. 9, S103-S112 (2007).
[CrossRef]

G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements," J Opt A-Pure Appl Opt 11, 034016 (2009).
[CrossRef]

J Opt. A-Pure Appl. Opt. (1)

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J Opt. A-Pure Appl. Opt. 9, S256-S263 (2007).
[CrossRef]

J Phys-Condens Mat (1)

M. Valentine, L. Dewalt, and H. OuYang, "Forces on a colloidal particle in a polymer solution: A study using optical tweezers," J Phys-Condens Mat 8, 9477-9482 (1996).
[CrossRef]

J. Chem. Phys. (1)

J. Crocker, "Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres," J. Chem. Phys. 106, 2837-2840 (1997).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, "Colloidal sorting in dynamic optical lattices," J Opt. A-Pure Appl. Opt. 9, S134-S138 (2007).
[CrossRef]

Meth Cell Biol (1)

Y.-L. Wang and D. E. Discher, "Cell mechanics," Meth Cell Biol 83 (2008).

Opt. Commun. (1)

A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004).
[CrossRef]

Opt. Express (1)

A. C. De Luca, G. Volpe, A. M. Drets, M. I. Geli, G. Pesce, G. Rusciano, A. Sasso, and D. Petrov, "Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers," Opt. Express 15, 7922-7932 (2007).
[CrossRef] [PubMed]

Phys Rev Lett (4)

J. Liu, M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, A. R. Bausch, and D. A. Weitz, "Microrheology probes length scale dependent rheology," Phys Rev Lett 96, 118104 (2006).
[CrossRef] [PubMed]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys Rev Lett 92, 198104 (2004).
[CrossRef] [PubMed]

E. Dufresne, T. Squires, M. Brenner, and D. Grier, "Hydrodynamic coupling of two brownian spheres to a planar surface," Phys. Rev. Lett . 85, 3317-3320 (2000).
[CrossRef] [PubMed]

F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, and C. Schmidt, "Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations," Phys Rev Lett 79, 3286-3289 (1997).
[CrossRef]

Phys. Rev. E (1)

K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

R. D. Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Proc Natl Acad Sci USA (1)

A. Ashkin and J. M. Dziedzic, "Internal cell manipulation using infrared laser traps," Proc Natl Acad Sci USA 86, 7914-8 (1989).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Waigh, "Microrheology of complex fluids," Rep. Prog. Phys. 68, 685-742 (2005).
[CrossRef]

Rev. Sci. Inst. (1)

G. Pesce, A. Sasso, and S. Fusco, "Viscosity measurements on micron-size scale using optical tweezers," Rev. Sci. Inst. 76, 115105 (2005).
[CrossRef]

Other (3)

M. Gardel, M. Valentine, and D. A. Weitz, Microscale Diagnostic Techniques (Springer, Oxford, 2005), chap. Microrheology.

J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley, New York, 1980).

R. G. Larson, The Structure and Rheology of Complex FLuids (University Press, Oxford, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the experimental set-up for micro-rheology measurements.

Fig. 2.
Fig. 2.

Upper trace: modulation of the trapping laser power. Lower trace: typical record of the particle positions during the modulation of the trapping laser power.

Fig. 3.
Fig. 3.

Power Spectral Densities (PSDs) calculated for two different concentrations (0.02 and 2.00 mg/ml) of HA in the two regimes analyzed here: CWOT mode (dashed lines) and BOT mode (solid lines).

Fig. 4.
Fig. 4.

Mean Square Displacements (MSDs) calculated for two different concentrations (0.02 and 2.00 mg/ml) of HA in the two regimes analysed here: CWOT mode (dashed lines) and BOT mode (solid lines).

Fig. 5.
Fig. 5.

Viscous modulus G″(f) for four different concentrations (in mg/ml) of HA. CWOT mode (dashed lines) and BOT mode (solid lines). The curves are shifted for clarity. There isn’t a difference between the two modes since the viscosity of the sample is not affected by the presence of the optical trap.

Fig. 6.
Fig. 6.

Elastic modulus G′(f) for four different concentrations of HA. CWOT mode (dashed lines) and BOT mode (solid lines), The elastic modulus after the correction G sample = G meas - G trap is indicated in the first panel.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

m x ̈ + γ x ˙ + κ x = F S ( t )
S x ( f ) = k B T π 2 γ 1 ( f c 2 + f 2 )
𝓕 ( x ) = α 𝓕 ( F ) .
G ( f ) = 1 6 π a α .
α″ = π f 2 k B T S ( f ) .
α′ ( f ) = 4 P 0 + d z z α″ ( x z ) z 2 f 2 =
= 4 0 + cos ( 2 π f t ) d t 0 + α″ ( f′ ) sin ( 2 π f′ t ) d f
G′ trap = κ 6 π a
G″ = 2 π η f

Metrics