Abstract

We propose an in-line monitoring technique that uses 650 nm visible light for performing maintenance work on Fiber-to-the-home (FTTH) network quickly without the need for measuring skills or external devices. This technique is characterized by visible light (650 nm) generated by an SHG module from the 1.3 μm-band line signal. We fabricate a 1.3 μm-band quasi phase matched LiNbO3 (QPM-LN) module, and the measure the 650 nm second harmonic (SH) power to test the proposed short-pulse modulation method. The results confirm the feasibility of the short-pulse modulation method with different peak factors (PFs) (1.0-7.3). We also examine the effect of short-pulse modulation on system performance at the optical receiver by measuring the bit error rate (BER) of received data (1.25 Gb/s). The BER is basically unaffected by the PF (1.0-5.5). This means that the proposed technique has little influence on data reception as regards PF (1.0-5.5).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Natsume, K. Suzuki, and Y. Kozawa, “Fiber Identification Technique for Bending Insensitive Optical Fiber,” The International Wire & Cable Symposium, 359–362 (2007).
  2. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [Crossref]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  4. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
    [Crossref]
  5. ITU-T Recommendation G983 series.
  6. T. Kubo, T. Taniguchi, O. Tadanaga, N. Sakurai, H. Kimura, K. Kumozaki, and M. Asobe, “In-Line Monitoring Technique with Visible Light for Optical Access Systems by Using 1.3 μm-Band QPM-LN Module,” The 14th OptoElectronics and Communication Conference, WH5 (2009).
  7. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
    [Crossref]
  8. K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992).
    [Crossref]
  9. J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
    [Crossref]
  10. K. Sakai, Y. Koyata, S. Itakura, and Y. Hirano, “High-Power, Highly Efficient Second-Harmonic Generation in a Periodically Poled MgO:LiNbO3 Planar Waveguide,” J. Lightwave Technol. 27(5), 590–596 (2009).
    [Crossref]
  11. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
    [Crossref]
  12. T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
    [Crossref] [PubMed]
  13. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nature photon. 3(3), 139–143 (2009).

2009 (1)

2005 (1)

2004 (1)

2003 (2)

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

2002 (1)

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

1997 (1)

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

1996 (1)

1992 (1)

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992).
[Crossref]

Asobe, M.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

Atkin, D. M.

Bach, R.

Birks, T. A.

Blows, J. L.

Blumenthal, D. J.

Bolger, J. A.

Eggleton, B. J.

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[Crossref] [PubMed]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

Einstein, D.

Her, T. H.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

Hirano, Y.

Hogari, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Hunsche, S.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

Itakura, S.

Kilper, D. C.

Knight, J. C.

Koyata, Y.

Landolsi, T.

Lang, R. J.

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

Littler, I.

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

Mizuuchi, K.

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992).
[Crossref]

Nakajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Nam, D. W.

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

Ng, T. T.

Nishida, Y.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

Ostar, L.

Preiss, M.

Raybon, G.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

Rochette, M.

Russell, P. St. J.

Sakai, K.

Sankawa, I.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Siala, S.

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

Tajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Taniuchi, T.

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992).
[Crossref]

Waarts, R. G.

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

Webjörn, J.

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

Willner, A. E.

Yamamoto, K.

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992).
[Crossref]

Zhou, J.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Electron. Lett. (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003).
[Crossref]

J. Lightwave Technol. (2)

J. Quantum Electron. (2)

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992).
[Crossref]

J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photon. Technol. Lett. (2)

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002).
[Crossref]

Other (4)

ITU-T Recommendation G983 series.

T. Kubo, T. Taniguchi, O. Tadanaga, N. Sakurai, H. Kimura, K. Kumozaki, and M. Asobe, “In-Line Monitoring Technique with Visible Light for Optical Access Systems by Using 1.3 μm-Band QPM-LN Module,” The 14th OptoElectronics and Communication Conference, WH5 (2009).

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nature photon. 3(3), 139–143 (2009).

A. Natsume, K. Suzuki, and Y. Kozawa, “Fiber Identification Technique for Bending Insensitive Optical Fiber,” The International Wire & Cable Symposium, 359–362 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SHG-based monitoring technique.

Fig. 2
Fig. 2

(a) Quenching state. (b) Lighting state. (c) Blinking state.

Fig. 3
Fig. 3

(a) Experimental setup. (b) Fabricated QPM-LN module. (c) Inner structure of QPM-LN module.

Fig. 4
Fig. 4

SH power vs PFs.

Fig. 5
Fig. 5

Photographs of 650 nm SH light (a) Lighting state at PF 7.3. (b) Quenching state at PF 1.0.

Fig. 6
Fig. 6

BER vs. PF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P SH t = α { P ( t ) } 2 T
P SH pulse t = α { η P ( t ) } 2 T η = η P SH t

Metrics