Abstract

We present an extensive experimental study of microwave scattering by a fully characterized complex aggregate. We measured the full amplitude scattering matrix (amplitude and phase of the four elements) for a wide range of configurations. The presented results are of special interest to the light scattering community. Our experiments offer the possibility to validate numerical methods against experiments, since the geometrical and dielectric properties of the complex target are known to a high degree of precision, a situation difficult to attain in the optical regime. We analyze in detail the behaviour of amplitude and phase as a function of the scattering angle and target orientation. Furthermore, we compare different computational methods for a specific experimental configuration.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Scattering by spheres with nonisotropic refractive indices

R. T. Wang and J. M. Greenberg
Appl. Opt. 15(5) 1212-1217 (1976)

Electromagnetic scattering from two dielectric spheres: further comparisons between theory and experiment

Kirk A. Fuller, George W. Kattawar, and Ru T. Wang
Appl. Opt. 25(15) 2521-2529 (1986)

Phase differential scattering from microspheres

Roger G. Johnston, Shermila B. Singham, and Gary C. Salzman
Appl. Opt. 25(19) 3566-3572 (1986)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, “Scale invariance rule in electromagnetic scattering,” J. Quant. Spectrosc. Radiat. Transf. 101, 411–415 (2006).
    [Crossref]
  2. J. M. Greenberg, N. E. Pedersen, and J. C. Pedersen, “Microwave analog to the scattering of light by nonspherical particles,” J. Appl. Phys. 32, 233–242 (1961).
    [Crossref]
  3. B. Gustafson, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000), chap. Microwave Analog to Light-Scattering Measurements, pp. 367–390.
    [Crossref]
  4. B. A. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control.” J. Quant. Spectrosc. Radiat. Transf. 55, 663–672 (1996).
    [Crossref]
  5. R. H. Zerull, B. Gustafson, K. Schulz, and E. Thiele-Corbach, “Scattering by aggregates with and without an absorbing mantle: Microwave analog experiments,” Appl. Opt. 32, 4088–4100 (1993).
    [PubMed]
  6. Y.-L. Xu and B. A. S. Gustafson, “A generalized multiparticle mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
    [Crossref]
  7. L. Kolokolova and B. A. S. Gustafson, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transf. 70, 611–625 (2001).
    [Crossref]
  8. J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
    [Crossref]
  9. Y.-L. Xu and R. T. Wang, “Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix,” Phys. Rev. E 58, 3931–3948 (1998).
    [Crossref]
  10. R. A. Dobbins and C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
    [Crossref]
  11. I. A. Kilin, “A nonintrusive diagnostics technique for flame soot based on near-infrared emission spectrometry,” Ph.D. thesis, Middle-East Technical University, Ankara, Turkey and INSA Lyon, Villeurbanne, France (2007).
  12. O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
    [Crossref]
  13. C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
    [Crossref]
  14. J.-M. Geffrin and P. Sabouroux, “Continuing with the fresnel database: experimental setup and improvements in 3d scattering measurements,” Inverse Problems 25, 024001 (18pp) (2009).
    [Crossref]
  15. C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
    [Crossref]
  16. “Agilent 85301b/c antenna measurement systems 45 mhz to 110 ghz configuration guide,”.
  17. D. Zwillinger, CRC Standard Mathematical Tables and Formulae (Chapman & Hall/CRC: 31st revised edition, 2002).
    [Crossref]
  18. B. Draine and P. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  19. B. T. Draine and P. J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0 (2008).
  20. C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
    [Crossref]
  21. D. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851 (1994).
    [Crossref]
  22. D. W. Mackowski and M. I. Mishchenko, “Calculation of the t matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
    [Crossref]
  23. B. Stout, J. C. Auger, and A. Devilez, “Recursive t matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25, 2549 (2008).
    [Crossref]
  24. J. Kong, Electromagnetic wave theory (Cambridge, MA: EMW Publishing, 2000).
  25. H. van der Vorst, Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, 2003).
    [Crossref]
  26. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
    [Crossref]
  27. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1994).
  28. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, inc, 1985).
  29. M. Mishchenko, L. Travis, and A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).
  30. G. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).
  31. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287 (1951).
    [Crossref]
  32. M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).
  33. O. Moine and B. Stout, “Optical force calculations in arbitrary beams by use of the vector addition theorem,” J. Opt. Soc. Am. B 22, 1620–1631 (2005).
    [Crossref]
  34. J. Auger and B. Stout, “A recursive centered t-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79, 533–547 (2003).
    [Crossref]
  35. P. van den Berg, M. Cote, and R. Kleinman, “;“blind” shape reconstruction from experimental data,” Antennas and Propagation, IEEE Transactions on  43, 1389–1396 (1995).
    [Crossref]
  36. C. M. Sorensen, “Light scattering by fractal aggregates: A review,” Aerosol Sci. Technol. 35, 648 (2001).
  37. J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
    [Crossref]
  38. B. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000), chap. The Discrete Dipole Approximation for Light Scattering by Irregular Targets, pp. 131–145.
  39. M. Yurkin and A. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007).
    [Crossref]
  40. B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti - wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
    [Crossref]
  41. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” astro-ph/0403082 (2004).
  42. W. J. Wiscombe, “Improved mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [Crossref] [PubMed]

2009 (4)

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

J.-M. Geffrin and P. Sabouroux, “Continuing with the fresnel database: experimental setup and improvements in 3d scattering measurements,” Inverse Problems 25, 024001 (18pp) (2009).
[Crossref]

C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
[Crossref]

J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
[Crossref]

2008 (2)

B. Stout, J. C. Auger, and A. Devilez, “Recursive t matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25, 2549 (2008).
[Crossref]

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

2007 (1)

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007).
[Crossref]

2006 (2)

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

M. I. Mishchenko, “Scale invariance rule in electromagnetic scattering,” J. Quant. Spectrosc. Radiat. Transf. 101, 411–415 (2006).
[Crossref]

2005 (2)

J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
[Crossref]

O. Moine and B. Stout, “Optical force calculations in arbitrary beams by use of the vector addition theorem,” J. Opt. Soc. Am. B 22, 1620–1631 (2005).
[Crossref]

2004 (1)

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

2003 (2)

J. Auger and B. Stout, “A recursive centered t-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79, 533–547 (2003).
[Crossref]

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
[Crossref]

2001 (3)

Y.-L. Xu and B. A. S. Gustafson, “A generalized multiparticle mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

L. Kolokolova and B. A. S. Gustafson, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transf. 70, 611–625 (2001).
[Crossref]

C. M. Sorensen, “Light scattering by fractal aggregates: A review,” Aerosol Sci. Technol. 35, 648 (2001).

1998 (1)

Y.-L. Xu and R. T. Wang, “Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix,” Phys. Rev. E 58, 3931–3948 (1998).
[Crossref]

1996 (2)

B. A. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control.” J. Quant. Spectrosc. Radiat. Transf. 55, 663–672 (1996).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the t matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
[Crossref]

1995 (1)

P. van den Berg, M. Cote, and R. Kleinman, “;“blind” shape reconstruction from experimental data,” Antennas and Propagation, IEEE Transactions on  43, 1389–1396 (1995).
[Crossref]

1994 (2)

1993 (2)

R. H. Zerull, B. Gustafson, K. Schulz, and E. Thiele-Corbach, “Scattering by aggregates with and without an absorbing mantle: Microwave analog experiments,” Appl. Opt. 32, 4088–4100 (1993).
[PubMed]

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti - wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

1987 (1)

R. A. Dobbins and C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

1980 (1)

1961 (1)

J. M. Greenberg, N. E. Pedersen, and J. C. Pedersen, “Microwave analog to the scattering of light by nonspherical particles,” J. Appl. Phys. 32, 233–242 (1961).
[Crossref]

1951 (1)

M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287 (1951).
[Crossref]

Auger, J.

J. Auger and B. Stout, “A recursive centered t-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79, 533–547 (2003).
[Crossref]

Auger, J. C.

Babenko, V.

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

Bohren, G.

G. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

Chaumet, P. C.

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1994).

Cote, M.

P. van den Berg, M. Cote, and R. Kleinman, “;“blind” shape reconstruction from experimental data,” Antennas and Propagation, IEEE Transactions on  43, 1389–1396 (1995).
[Crossref]

Devilez, A.

Dobbins, R. A.

R. A. Dobbins and C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

Draine, B.

B. Draine and P. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[Crossref]

B. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000), chap. The Discrete Dipole Approximation for Light Scattering by Irregular Targets, pp. 131–145.

Draine, B. T.

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti - wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” astro-ph/0403082 (2004).

B. T. Draine and P. J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0 (2008).

Eyraud, C.

C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
[Crossref]

J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
[Crossref]

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

Flatau, P.

Flatau, P. J.

B. T. Draine and P. J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0 (2008).

Geffrin, J.-M.

J.-M. Geffrin and P. Sabouroux, “Continuing with the fresnel database: experimental setup and improvements in 3d scattering measurements,” Inverse Problems 25, 024001 (18pp) (2009).
[Crossref]

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
[Crossref]

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

Giovannini, H.

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

Goodman, J.

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti - wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

Greenberg, J. M.

J. M. Greenberg, N. E. Pedersen, and J. C. Pedersen, “Microwave analog to the scattering of light by nonspherical particles,” J. Appl. Phys. 32, 233–242 (1961).
[Crossref]

Gustafson, B.

R. H. Zerull, B. Gustafson, K. Schulz, and E. Thiele-Corbach, “Scattering by aggregates with and without an absorbing mantle: Microwave analog experiments,” Appl. Opt. 32, 4088–4100 (1993).
[PubMed]

B. Gustafson, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000), chap. Microwave Analog to Light-Scattering Measurements, pp. 367–390.
[Crossref]

Gustafson, B. A. S.

J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
[Crossref]

Y.-L. Xu and B. A. S. Gustafson, “A generalized multiparticle mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

L. Kolokolova and B. A. S. Gustafson, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transf. 70, 611–625 (2001).
[Crossref]

B. A. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control.” J. Quant. Spectrosc. Radiat. Transf. 55, 663–672 (1996).
[Crossref]

Gutkowicz-Krusin, D.

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” astro-ph/0403082 (2004).

Herique, A.

C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
[Crossref]

Hoekstra, A.

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007).
[Crossref]

Huffman, D.

G. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

Kahnert, F. M.

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
[Crossref]

Khlebtsov, N.

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

Kilin, I. A.

I. A. Kilin, “A nonintrusive diagnostics technique for flame soot based on near-infrared emission spectrometry,” Ph.D. thesis, Middle-East Technical University, Ankara, Turkey and INSA Lyon, Villeurbanne, France (2007).

Kleinman, R.

P. van den Berg, M. Cote, and R. Kleinman, “;“blind” shape reconstruction from experimental data,” Antennas and Propagation, IEEE Transactions on  43, 1389–1396 (1995).
[Crossref]

Kofman, W.

C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
[Crossref]

Kolokolova, L.

J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
[Crossref]

L. Kolokolova and B. A. S. Gustafson, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transf. 70, 611–625 (2001).
[Crossref]

Kong, J.

J. Kong, Electromagnetic wave theory (Cambridge, MA: EMW Publishing, 2000).

Kong, J. A.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, inc, 1985).

Lacis, A.

M. Mishchenko, L. Travis, and A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

Lacroix, B.

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

Lax, M.

M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287 (1951).
[Crossref]

Litman, A.

C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
[Crossref]

J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
[Crossref]

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

Mackowski, D.

Mackowski, D. W.

Megaridis, C. M.

R. A. Dobbins and C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

Merchiers, O.

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

Mishchenko, M.

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

M. Mishchenko, L. Travis, and A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

Mishchenko, M. I.

M. I. Mishchenko, “Scale invariance rule in electromagnetic scattering,” J. Quant. Spectrosc. Radiat. Transf. 101, 411–415 (2006).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the t matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
[Crossref]

Moine, O.

Pedersen, J. C.

J. M. Greenberg, N. E. Pedersen, and J. C. Pedersen, “Microwave analog to the scattering of light by nonspherical particles,” J. Appl. Phys. 32, 233–242 (1961).
[Crossref]

Pedersen, N. E.

J. M. Greenberg, N. E. Pedersen, and J. C. Pedersen, “Microwave analog to the scattering of light by nonspherical particles,” J. Appl. Phys. 32, 233–242 (1961).
[Crossref]

Sabouroux, P.

J.-M. Geffrin and P. Sabouroux, “Continuing with the fresnel database: experimental setup and improvements in 3d scattering measurements,” Inverse Problems 25, 024001 (18pp) (2009).
[Crossref]

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
[Crossref]

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

Schulz, K.

Shin, R. T.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, inc, 1985).

Sorensen, C. M.

C. M. Sorensen, “Light scattering by fractal aggregates: A review,” Aerosol Sci. Technol. 35, 648 (2001).

Stout, B.

Thiele-Corbach, E.

Thomas-Osip, J. E.

J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
[Crossref]

Tortel, H.

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

Travis, L.

M. Mishchenko, L. Travis, and A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

Tsang, L.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, inc, 1985).

Vaillon, R.

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

van den Berg, P.

P. van den Berg, M. Cote, and R. Kleinman, “;“blind” shape reconstruction from experimental data,” Antennas and Propagation, IEEE Transactions on  43, 1389–1396 (1995).
[Crossref]

van der Vorst, H.

H. van der Vorst, Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, 2003).
[Crossref]

Videen, G.

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

Wang, R. T.

Y.-L. Xu and R. T. Wang, “Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix,” Phys. Rev. E 58, 3931–3948 (1998).
[Crossref]

Wiscombe, W. J.

Wriedt, T.

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

Xu, Y.-L.

J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
[Crossref]

Y.-L. Xu and B. A. S. Gustafson, “A generalized multiparticle mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

Y.-L. Xu and R. T. Wang, “Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix,” Phys. Rev. E 58, 3931–3948 (1998).
[Crossref]

Yurkin, M.

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007).
[Crossref]

Zerull, R. H.

Zwillinger, D.

D. Zwillinger, CRC Standard Mathematical Tables and Formulae (Chapman & Hall/CRC: 31st revised edition, 2002).
[Crossref]

Aerosol Sci. Technol. (1)

C. M. Sorensen, “Light scattering by fractal aggregates: A review,” Aerosol Sci. Technol. 35, 648 (2001).

Antennas and Propagation (1)

P. van den Berg, M. Cote, and R. Kleinman, “;“blind” shape reconstruction from experimental data,” Antennas and Propagation, IEEE Transactions on  43, 1389–1396 (1995).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

O. Merchiers, J.-M. Geffrin, R. Vaillon, P. Sabouroux, and B. Lacroix, “Microwave analog to light scattering measurements on a fully characterized complex aggregate,” Appl. Phys. Lett. 94, 181107-+ (2009).
[Crossref]

C. Eyraud, J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, “Drift correction for scattering measurements,” Appl. Phys. Lett. 89, 244104-3 (2006).
[Crossref]

Astrophys. J. (1)

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti - wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

Icarus (1)

J. E. Thomas-Osip, B. A. S. Gustafson, L. Kolokolova, and Y.-L. Xu, “An investigation of titan’s aerosols using microwave analog measurements and radiative transfer modeling,” Icarus 179, 511–522 (2005).
[Crossref]

Inverse Problems (2)

J.-M. Geffrin and P. Sabouroux, “Continuing with the fresnel database: experimental setup and improvements in 3d scattering measurements,” Inverse Problems 25, 024001 (18pp) (2009).
[Crossref]

C. Eyraud, A. Litman, A. Herique, and W. Kofman, “Microwave imaging from experimental data within a bayesian framework with realistic random noise,” Inverse Problems 25, 024005 (2009).
[Crossref]

J. Appl. Phys. (1)

J. M. Greenberg, N. E. Pedersen, and J. C. Pedersen, “Microwave analog to the scattering of light by nonspherical particles,” J. Appl. Phys. 32, 233–242 (1961).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (7)

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007).
[Crossref]

J. Auger and B. Stout, “A recursive centered t-matrix algorithm to solve the multiple scattering equation: numerical validation,” J. Quant. Spectrosc. Radiat. Transf. 79, 533–547 (2003).
[Crossref]

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
[Crossref]

B. A. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control.” J. Quant. Spectrosc. Radiat. Transf. 55, 663–672 (1996).
[Crossref]

M. I. Mishchenko, “Scale invariance rule in electromagnetic scattering,” J. Quant. Spectrosc. Radiat. Transf. 101, 411–415 (2006).
[Crossref]

Y.-L. Xu and B. A. S. Gustafson, “A generalized multiparticle mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

L. Kolokolova and B. A. S. Gustafson, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transf. 70, 611–625 (2001).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf.. (1)

M. Mishchenko, G. Videen, V. Babenko, N. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by partciles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf.. 88, 357–406 (2004).

Langmuir (1)

R. A. Dobbins and C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[Crossref]

Phys. Rev. E (1)

Y.-L. Xu and R. T. Wang, “Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix,” Phys. Rev. E 58, 3931–3948 (1998).
[Crossref]

Radio Sci. (2)

C. Eyraud, J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, “Validation of a 3D bistatic microwave scattering measurement setup,” Radio Sci. 43, 4018-+ (2008).
[Crossref]

J.-M. Geffrin, C. Eyraud, A. Litman, and P. Sabouroux, “Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets,” Radio Sci. 44 (2009).
[Crossref]

Rev. Mod. Phys. (1)

M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287 (1951).
[Crossref]

Other (13)

J. Kong, Electromagnetic wave theory (Cambridge, MA: EMW Publishing, 2000).

H. van der Vorst, Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, 2003).
[Crossref]

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1994).

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, inc, 1985).

M. Mishchenko, L. Travis, and A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

G. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

B. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000), chap. The Discrete Dipole Approximation for Light Scattering by Irregular Targets, pp. 131–145.

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” astro-ph/0403082 (2004).

I. A. Kilin, “A nonintrusive diagnostics technique for flame soot based on near-infrared emission spectrometry,” Ph.D. thesis, Middle-East Technical University, Ankara, Turkey and INSA Lyon, Villeurbanne, France (2007).

“Agilent 85301b/c antenna measurement systems 45 mhz to 110 ghz configuration guide,”.

D. Zwillinger, CRC Standard Mathematical Tables and Formulae (Chapman & Hall/CRC: 31st revised edition, 2002).
[Crossref]

B. T. Draine and P. J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0 (2008).

B. Gustafson, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000), chap. Microwave Analog to Light-Scattering Measurements, pp. 367–390.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Computer generated representation of the aggregate using the output of the algorithm (a). Front (b) and side (c) views of the constructed aggregate. In pictures (b) and (c), one can appreciate the polystyrene supports, transparent to microwaves, on which the aggregate rests. The plexiglass spheres are removed after the aggregate has been aligned.

Fig. 2.
Fig. 2.

On the left, a picture of the anechoic chamber and on the right the name conventions for the polarization components of the electric field in the experimental set-up. Here the red dashed line corresponds with the vertical arch and the green dashed one with the receiver positions in our configuration.

Fig. 3.
Fig. 3.

Scattering angle as a function of receiver position. The curve for the OP configuration was obtained for ϕE = 60°.

Fig. 4.
Fig. 4.

Amplitude (a) and phase (b) of S 1 as a function of frequency for a fixed aggregate position. ((oe-18-3-2056-i001) IP simulated, (oe-18-3-2056-i002) OP simulated, (oe-18-3-2056-i003) IP experimental, (oe-18-3-2056-i004) OP experimental).

Fig. 5.
Fig. 5.

Amplitude (a) and phase (b) of S 3 as a function of frequency for a fixed aggregate position. ((oe-18-3-2056-i005) IP simulated, (oe-18-3-2056-i006) OP simulated, (oe-18-3-2056-i007) IP experimental, (oe-18-3-2056-i008) OP experimental).

Fig. 6.
Fig. 6.

Axial rotations of the aggregate seen from above. Figure (c) corresponds with the position of the object in the experiments of section 5.1.

Fig. 7.
Fig. 7.

Amplitude (a) and phase (b) of S 1 for different positions, at a single frequency = 20 GHz. ((oe-18-3-2056-i009) IP simulated, (oe-18-3-2056-i010) OP simulated, (oe-18-3-2056-i011) IP experimental, (oe-18-3-2056-i012) OP experimental).

Fig. 8.
Fig. 8.

Amplitude (a) and phase (b) of S 3 for different positions, at a single frequency = 20 GHz. ((oe-18-3-2056-i013) IP simulated, (oe-18-3-2056-i014) OP simulated, (oe-18-3-2056-i015) IP experimental, (oe-18-3-2056-i016) OP experimental).

Fig. 9.
Fig. 9.

Amplitude (a) and phase (b) of S 1 at 20 GHz in IP configuration. (oe-18-3-2056-i017) Mean value, (oe-18-3-2056-i018) Extremal values.

Fig. 10.
Fig. 10.

Amplitude and phase of S 1 and S 2 matrix elements at 20 GHz in IP configuration. ((oe-18-3-2056-i019) Experiment, (oe-18-3-2056-i020) T-Matrix Mackowski, (oe-18-3-2056-i021) ddscat7.0, (oe-18-3-2056-i022) MoM, (oe-18-3-2056-i023) T-Matrix Stout).

Fig. 11.
Fig. 11.

Amplitude and phase of S 3 and S 4 matrix elements at 20 GHz in IP configuration. ((oe-18-3-2056-i024) Experiment, (oe-18-3-2056-i025) T-Matrix Mackowski, (oe-18-3-2056-i026) ddscat7.0, (oe-18-3-2056-i027) MoM, (oe-18-3-2056-i028) T-Matrix Stout).

Tables (1)

Tables Icon

Table 1. The values of the error function f err for each matrix element and computational method.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

N = k 0 ( R g / a ) D f ,
E θ k = E k · e θ ,
E ϕ k = E k · e ϕ ,
ε ( r ) = ε 0 ε r ( r ) + i ε 0 ε i ( r )
E s ( r ) = Ω G 0 r ( r , r ) χ ( r ) E ( r ) dr
E ( r ' ) = E 0 ( r ) + Ω G 00 ( r , r ) χ ( r ) E ( r ) d r
C = i = 0 N r E c , i s E ̄ m , i s i = 0 N r E m , i s E ̄ m , i s
E s E s = e ik ( r z ) ikr S 2 S 3 S 4 S 1 E i E i ,
E θ s E ϕ s = S θθ S θϕ S ϕθ S ϕϕ E θ i E ϕ i ,
M TP = T s 1 · M BH · T i ,
q = k s k i ,
= 4 π λ 1 sin ( θ S / 2 ) ,
I ( q ) ~ 1 1 3 q 2 R g 2 ,
f err = E m s E c s 2 E m s 2 ,
N O , c x e + 4 x e 1 / 3 + 2 ,

Metrics