Abstract

A SiGe electro-optic modulator operating at wavelength of 1.55μm is proposed. The “ON” state voltage is set at 1.4V. The arm of the MZI waveguide required to generate a π phase shift is 73.6μm, and the total attenuation loss is 3.95dB. The rise and fall delay time is 70.9ps and 24.5ps, respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators

Qianfan Xu, Sasikanth Manipatruni, Brad Schmidt, Jagat Shakya, and Michal Lipson
Opt. Express 15(2) 430-436 (2007)

Design of High Efficiency Multi-GHz SiGe HBT Electro-Optic Modulator

Shengling Deng, Z. Rena Huang, and J. F. McDonald
Opt. Express 17(16) 13425-13438 (2009)

Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions

Zhi-Yong Li, Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben, and Jin-Zhong Yu
Opt. Express 17(18) 15947-15958 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]
  2. F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
    [Crossref]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  5. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  6. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  7. S. Deng, Z. R. Huang, and J. F. McDonald, “Design of high efficiency multi-GHz SiGe HBT electro-optic modulator,” Opt. Express 17(16), 13425–13428 (2009).
    [Crossref] [PubMed]
  8. A. Liu, “Announcing the world’s first 40G silicon laser modulator”, http://blogs.intel.com/research/2007/07/40g_modulator.php.
  9. J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
    [Crossref]
  10. J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
    [Crossref]
  11. J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors (Artech House, Inc, 2007).
  12. R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).
  13. R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
    [Crossref]
  14. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
    [Crossref]

2009 (1)

2008 (1)

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
[Crossref]

2007 (3)

2006 (1)

J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
[Crossref]

2005 (2)

J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

1997 (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

1990 (1)

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[Crossref]

1986 (1)

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Ahlgren, D.

J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Chetrit, Y.

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Cressler, J. D.

J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors (Artech House, Inc, 2007).

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Deng, S.

Freeman, G.

J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
[Crossref]

J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
[Crossref]

Friedman, L.

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[Crossref]

Gardes, F. Y.

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
[Crossref]

Green, W. M. J.

Greenberg, D.

J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
[Crossref]

Huang, Z. R.

Iodice, M.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Izhaky, N.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Khater, M.

J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
[Crossref]

Knights, A. P.

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
[Crossref]

Lareau, R. D.

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[Crossref]

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Lipson, M.

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, “Announcing the world’s first 40G silicon laser modulator”, http://blogs.intel.com/research/2007/07/40g_modulator.php.

Manipatruni, S.

Mashanovich, G.

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
[Crossref]

McDonald, J. F.

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Niu, G.

J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors (Artech House, Inc, 2007).

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Reed, G. T.

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
[Crossref]

Rieh, J.-S.

J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
[Crossref]

J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
[Crossref]

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Schmidt, B.

Sekaric, L.

Shakya, J.

Soref, R. A.

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[Crossref]

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Stricker, A.

J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
[Crossref]

Vlasov, Y. A.

Xu, Q.

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Electron. Lett. (1)

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[Crossref]

IEEE Trans. Electron. Dev. (1)

J.-S. Rieh, M. Khater, G. Freeman, and D. Ahlgren, “SiGe HBT without selectively implanted collector (SIC) exhibiting fmax=310GHz and BVCEO=2V,” IEEE Trans. Electron. Dev. 53, 2407–2409 (2006).
[Crossref]

J. Lightwave Technol. (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[Crossref]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Proc. IEEE (1)

J.-S. Rieh, D. Greenberg, A. Stricker, and G. Freeman, “Scaling of SiGe heterojunction bipolar transistors,” Proc. IEEE 93(9 Issue 9), 1522–1538 (2005).
[Crossref]

Proc. of SPIE (1)

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C-10 (2008).
[Crossref]

SPIE Integr. Opt. Circuit Eng. (1)

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Other (2)

J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors (Artech House, Inc, 2007).

A. Liu, “Announcing the world’s first 40G silicon laser modulator”, http://blogs.intel.com/research/2007/07/40g_modulator.php.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of our HBT device cross-section

Fig. 2.
Fig. 2.

Y-axis doping profile through the device center

Fig. 3.
Fig. 3.

(a) Electron density (b) Hole density along y-axis at the device center for VBE = 0V, 0.8V, 1.0V, 1.2V, and 1.4V (from bottom to top in each plot)

Fig. 4.
Fig. 4.

(a) Major electric field Ey of TM-like mode at λ = 1.55μm (b) Mode overlap with the waveguide.

Fig. 5.
Fig. 5.

Transient analysis: (a) input pulse VBE , and (b) IC response.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P d = 0.5 × f s × 0 T s ( i C ( t ) V CE ( t ) + i B ( t ) V BE ( t ) ) dt

Metrics