Abstract

Finite element calculations of inter-modal Brillouin gain between LP0n modes in acoustically-inhomogeneous higher order mode (HOM) fibers are presented. When the pump beam is launched in the LP08 mode, the LP01 mode of the Stokes beam experiences the highest gain, approximately 6.7 dB higher than the peak LP08-LP08 gain. An LP01 Stokes beam experiences successively more Brillouin gain when pumped by higher-order LP0n modes.

© 2010 OSA

Full Article  |  PDF Article
Related Articles
SBS gain efficiency measurements and modeling in a 1714 µm2 effective area LP08 higher-order mode optical fiber

M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi
Opt. Express 15(24) 15952-15963 (2007)

Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers

John E. McElhenny, Radha K. Pattnaik, Jean Toulouse, Kunimasa Saitoh, and Masanori Koshiba
J. Opt. Soc. Am. B 25(4) 582-593 (2008)

Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers

Seongwoo Yoo, Christophe A. Codemard, Yoonchan Jeong, Jayanta K. Sahu, and Johan Nilsson
Appl. Opt. 49(8) 1388-1399 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3225 .
    [Crossref] [PubMed]
  2. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-12-1797 .
    [Crossref] [PubMed]
  3. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-7-748 .
    [Crossref] [PubMed]
  4. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6623 .
    [Crossref] [PubMed]
  5. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-23-3225 .
    [Crossref] [PubMed]
  6. M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15952 .
    [Crossref] [PubMed]
  7. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving Gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt. 46(22), 5147–5157 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-22-5147 .
    [Crossref] [PubMed]
  8. S. M. Massey, J. B. Spring, and T. H. Russell, “Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics,” Opt. Express 16(15), 10873–10885 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-10873 .
    [Crossref] [PubMed]
  9. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express 17(18), 15685–15699 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15685 .
    [Crossref] [PubMed]
  10. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
    [Crossref]
  11. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express 17(18), 16225–16237 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16225 .
    [Crossref] [PubMed]

2009 (2)

2008 (1)

2007 (4)

2006 (1)

2005 (2)

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Dimarcello, F. V.

Fini, J. M.

Ghalmi, S.

M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15952 .
[Crossref] [PubMed]

J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6623 .
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-12-1797 .
[Crossref] [PubMed]

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3225 .
[Crossref] [PubMed]

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-23-3225 .
[Crossref] [PubMed]

Jasapara, J.

Leuchs, G.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Lindlein, N.

Massey, S. M.

Mermelstein, M. D.

Monberg, E.

Nicholson, J. W.

Ramachandran, S.

J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6623 .
[Crossref] [PubMed]

J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-7-748 .
[Crossref] [PubMed]

M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15952 .
[Crossref] [PubMed]

N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving Gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt. 46(22), 5147–5157 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-22-5147 .
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-12-1797 .
[Crossref] [PubMed]

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3225 .
[Crossref] [PubMed]

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-23-3225 .
[Crossref] [PubMed]

Russell, T. H.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Spring, J.

Spring, J. B.

Ward, B.

Wisk, P.

Yan, M. F.

Appl. Opt. (1)

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Brillouin gain spectrum for LP08-LP08 scattering showing the electric field magnitude profile, acoustic index profile and peak acoustic displacement profiles in the insets.

Fig. 2
Fig. 2

Brillouin gain spectrum for LP08-LP01 scattering. The insets show the acoustic displacement profile at the Brillouin gain peak and a logarithmic intensity plot of the interference pattern between the two modes that drives the acoustic displacement through electrostriction.

Tables (2)

Tables Icon

Table 1 Properties of inter-modal Brillouin gain with an LP08 pump beam

Tables Icon

Table 2 Properties of inter-modal Brillouin gain with an LP01 Stokes beam

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d P s ( z ) d z = C B P s ( z ) P p
C B = ( 1 ρ c ) ( γ ε 0 ) 2 ( 2 π λ ) 3 f p | ( G g ) | f s f p | f p f s | f s ,
g ( x , y ) f s ( x , y ) f p ( x , y ) V t ( x , y ) 2 ,
( G g ) G ( x , y , x , y ) g ( x , y ) d x d y ,
f | g f ( x , y ) g ( x , y ) d x d y ,
f | g | h f ( x , y ) g ( x , y ) h ( x , y ) d x d y ,
A eff f s f s f p f p f s | f s f p | f p .
C B = ( 1 ρ c ) ( γ ε 0 ) 2 ( 2 π λ ) 3 E s T V ( K 1 R ) × E p ( E s T V E s ) ( E p T V E p )
R = k = 1 7 W k [ ( E s T × E p T ) N k T J k N k ] ,
ν B = V l , bulk n ac ( n s λ s + n p λ p )

Metrics