Abstract

Thin dielectric layers deposited on the inner surface of hollow cylindrical metallic waveguides for Terahertz (THz) waves reduce transmission losses below 1 dB/m. Impact of the dielectric layer on the waveguide dispersion is experimentally investigated by near-field mapping of guided short THz pulses at the input and the output of the waveguide. We obtain dispersion characteristics for the low-loss waveguide modes, the linearly-polarized HE11 mode and the TE01 mode, and compare the experimental results to the metallic waveguide dispersion. The additional dispersion due to the dielectric layer is found to be small for the HE11 mode and the phase velocity is primarily determined by the waveguide radius.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  2. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
    [CrossRef]
  3. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  4. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [CrossRef] [PubMed]
  5. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
    [CrossRef]
  6. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
    [CrossRef] [PubMed]
  7. J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric-Lined Circular Waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).
  8. C. Dragone, “Attenuation and Radiation Characteristics of the HE11 Mode,” IEEE Trans. Microw. Theory Tech. 28(7), 704–710 (1980).
    [CrossRef]
  9. C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
    [CrossRef]
  10. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
    [CrossRef]
  11. N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87(7), 071106 (2005).
    [CrossRef]
  12. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
    [CrossRef] [PubMed]
  13. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
    [CrossRef]
  14. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
    [CrossRef]
  15. O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
    [CrossRef]
  16. O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
    [CrossRef]

2009 (5)

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

2008 (3)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
[CrossRef]

2007 (2)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

2005 (1)

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87(7), 071106 (2005).
[CrossRef]

2001 (1)

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

2000 (1)

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

1980 (1)

C. Dragone, “Attenuation and Radiation Characteristics of the HE11 Mode,” IEEE Trans. Microw. Theory Tech. 28(7), 704–710 (1980).
[CrossRef]

1973 (1)

J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric-Lined Circular Waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

Adam, A. J.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Bang, O.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Bowden, B.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

Brener, I.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Bruce, A. J.

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Carlin, J. W.

J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric-Lined Circular Waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

Chang, H. C.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

Chen, H.-W.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

D’Agostino, P.

J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric-Lined Circular Waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

Dragone, C.

C. Dragone, “Attenuation and Radiation Characteristics of the HE11 Mode,” IEEE Trans. Microw. Theory Tech. 28(7), 704–710 (1980).
[CrossRef]

Federici, J.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Gong, M.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

Grattan, K. T. V.

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

Grischkowsky, D.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

Harel, R.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

Harrington, J. A.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[CrossRef]

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

Hsu, J. W. P.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

Hsueh, Y.-C.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

Huang, Y. J.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

Iwai, K.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

Jeon, T.-I.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

Jepsen, P. U.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

Lai, C.-H.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

Lee, M.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

Mark, P. R.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

Matsuura, Y.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
[CrossRef]

Mitrofanov, O.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Miyagi, M.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

Nielsen, K.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Pfeiffer, L. N.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

Planken, P. C.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Planken, P. C. M.

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87(7), 071106 (2005).
[CrossRef]

Rahman, B. M. A.

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

Rajarajan, M.

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

Rasmussen, H. K.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Ruel, R. R.

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Shi, Y.-W.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

Sun, C.-K.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

Takeda, E.

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
[CrossRef]

Tan, T.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

Tang, X.-L.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

Themistos, C.

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

van der Valk, N. C. J.

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87(7), 071106 (2005).
[CrossRef]

Wanke, M.

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

West, K. W.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

Wynn, J. D.

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87(7), 071106 (2005).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000).
[CrossRef]

Bell Syst. Tech. J. (1)

J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric-Lined Circular Waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).

IEEE J. Sel. Top. Quantum Electron. (1)

O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Dragone, “Attenuation and Radiation Characteristics of the HE11 Mode,” IEEE Trans. Microw. Theory Tech. 28(7), 704–710 (1980).
[CrossRef]

J. Appl. Phys. (1)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[CrossRef]

J. Lightwave Technol. (2)

C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007).
[CrossRef]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
[CrossRef]

Opt. Express (2)

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Space-time maps of the THz wave coupled to different combinations of waveguide modes. Maps of the electric field Ex (t) are shown in the left column and the corresponding maps of the field amplitude Ex (ω) at 2.3 THz are shown in the right column. The position of the input pinhole, the incident field polarization and the spatial scan lines are schematically shown on the right.

Fig. 2
Fig. 2

Spatial distribution of normalized electric field Ex for the modes in the dielectric-lined cylindrical metallic waveguide: HE11, TE01, HE12, and HE13 (from left to right). Experimental profiles (a) are measured at t = 0, 1.5, 4.2, and 10.2 ps respectively. Each map shows a 2x2 mm2 area for the 1.8-mm diameter waveguide. Analytical approximations are shown in (b).

Fig. 3
Fig. 3

Phase velocity plots for the HE11 and TE01 modes in the dielectric-coated (Ag/PS) waveguide and for the TE11 mode in the metallic (Ag) waveguide. Solid and empty symbols show the experimental data measured in the far-field (ff) and near-field (nf) zones respectively. Solid lines show the exact analytical solutions for the TE11 and TE01 modes in the metallic waveguide and the approximation for the HE11 mode. The inset shows waveforms of the input and output THz pulses propagating as the HE11 mode in the Ag/PS guide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v p = c ( 1 ω c 2 ω 2 ) 1 / 2 .
E x ( r , θ ) = E 0 J 0 ( k t r ) ;         E y ( r , θ ) = 0 ;

Metrics