Abstract

A series of alkaline earth borophosphate phosphors, (Ba,Sr)3BP3O12 doped with Eu2+ ions, were synthesized by a solid state reaction. Two emission bands at 465 nm and 520 nm were attributed to the f–d transitions of doped Eu2+ ions occupying in two different cation sites in host lattices and emission color variation was observed by substituting the M2+ sites, which was rationalized in terms of two competing factors of the crystal field strength and bond covalence. Green and bluish-white pc-LEDs were fabricated by combination of a 370 nm near-UV chip and composition-optimized Ba3BP3O12:Eu2+ and (Ba,Sr)3BP3O12:Eu2+ phosphors, respectively. The series of phosphors may serve as a promising green and bluish-white luminescent materials used in fabrication of near UV-based white pc-LEDs.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
    [CrossRef]
  2. R. Mueller-Mach and G. O. Mueller, “White-light-emitting diodes for illumination,” Proc. SPIE 3938, 30–41 (2000).
    [CrossRef]
  3. H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
    [CrossRef]
  4. K. Murakami, T. Taguchi, and M. Yoshino, “White illumination characteristics of ZnS-based phosphor materials excited by InGaN-based ultraviolet light-emitting diode,” Proc. SPIE-Int. Soc. Opt. Eng. 4079, 112–119 (2000).
  5. Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
    [CrossRef]
  6. R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998).
    [CrossRef]
  7. G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969).
    [CrossRef]
  8. A. Karthikeyani and R. Jagannatan, “Eu2+ luminescence in stillwellite-type SrBPO5− a new potential X-ray storage phosphor,” J. Lumin. 86(1), 79–85 (2000).
    [CrossRef]
  9. Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
    [CrossRef]
  10. P. Dorenbos, “Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds,” J. Lumin. 104(4), 239–260 (2003).
    [CrossRef]
  11. R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
    [CrossRef]
  12. Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
    [CrossRef]
  13. Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
    [CrossRef]
  14. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  15. L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
    [CrossRef]
  16. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [CrossRef]
  17. W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
    [CrossRef]
  18. J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
    [CrossRef]
  19. N. K. Davidenko, and K. B. Yatsimirskii, Theoretical and Experimental Chemistry (New York: Springer), p505 (1973).
  20. K. H. Bulter, Fluorescent Lamp Phosphors, The Pennsylvania State University Press, University Park, PA (1980).

2005 (3)

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
[CrossRef]

2004 (1)

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

2003 (2)

Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

P. Dorenbos, “Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds,” J. Lumin. 104(4), 239–260 (2003).
[CrossRef]

2002 (1)

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

2000 (2)

A. Karthikeyani and R. Jagannatan, “Eu2+ luminescence in stillwellite-type SrBPO5− a new potential X-ray storage phosphor,” J. Lumin. 86(1), 79–85 (2000).
[CrossRef]

R. Mueller-Mach and G. O. Mueller, “White-light-emitting diodes for illumination,” Proc. SPIE 3938, 30–41 (2000).
[CrossRef]

1998 (2)

R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998).
[CrossRef]

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

1997 (1)

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

1994 (1)

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

1969 (2)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969).
[CrossRef]

1967 (1)

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Asbrand, M.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969).
[CrossRef]

Bril, A.

G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969).
[CrossRef]

Chen, X.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Choi, J. C.

J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
[CrossRef]

De Vries, J.

G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Do, Y. R.

Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds,” J. Lumin. 104(4), 239–260 (2003).
[CrossRef]

Eisenmann, B.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Engelhardt, H.

R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998).
[CrossRef]

Gözel, G.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Guo, C. F.

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

Hauf, C.

R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998).
[CrossRef]

Hu, T.

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Huh, Y. D.

Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Im, W. B.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Jagannatan, R.

A. Karthikeyani and R. Jagannatan, “Eu2+ luminescence in stillwellite-type SrBPO5− a new potential X-ray storage phosphor,” J. Lumin. 86(1), 79–85 (2000).
[CrossRef]

Jeon, D. Y.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Jung, H. K.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Jung, K. Y.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Kang, J. H.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Karthikeyani, A.

A. Karthikeyani and R. Jagannatan, “Eu2+ luminescence in stillwellite-type SrBPO5− a new potential X-ray storage phosphor,” J. Lumin. 86(1), 79–85 (2000).
[CrossRef]

Kim, J. S.

J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
[CrossRef]

Kim, Y. H.

Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Kim, Y. I.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

Kizilyalli, M.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Kniep, R.

R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998).
[CrossRef]

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Liang, H. B.

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Liang, J.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

Liu, Q.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Liu, T.

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Mueller, G. O.

R. Mueller-Mach and G. O. Mueller, “White-light-emitting diodes for illumination,” Proc. SPIE 3938, 30–41 (2000).
[CrossRef]

Mueller-Mach, R.

R. Mueller-Mach and G. O. Mueller, “White-light-emitting diodes for illumination,” Proc. SPIE 3938, 30–41 (2000).
[CrossRef]

Pan, Y. X.

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Park, H. L.

J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
[CrossRef]

Park, Y. H.

J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
[CrossRef]

Rao, G.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

Röhr, C.

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Shi, Y.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

Shim, J. H.

Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Su, Q.

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Tao, Y.

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Van Uitert, L. G.

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

Wu, H.

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

Wu, M. M.

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Xu, J.

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

Yang, J.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

Zhang, H.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Zhang, X. M.

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

Zhuang, W.

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994).
[CrossRef]

Chem. Mater. (1)

R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005).
[CrossRef]

J. Alloy. Comp. (2)

Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002).
[CrossRef]

Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

J. Electrochem. Soc. (2)

Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967).
[CrossRef]

J. Electron. Soc. (1)

J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005).
[CrossRef]

J. Inorg. Nucl. Chem. (1)

G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969).
[CrossRef]

J. Lumin. (2)

A. Karthikeyani and R. Jagannatan, “Eu2+ luminescence in stillwellite-type SrBPO5− a new potential X-ray storage phosphor,” J. Lumin. 86(1), 79–85 (2000).
[CrossRef]

P. Dorenbos, “Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds,” J. Lumin. 104(4), 239–260 (2003).
[CrossRef]

J. Mater. Res. (1)

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005).
[CrossRef]

J. Phys. Chem. Solids (1)

Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

J. Solid State Chem. (1)

Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998).
[CrossRef]

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Proc. SPIE (1)

R. Mueller-Mach and G. O. Mueller, “White-light-emitting diodes for illumination,” Proc. SPIE 3938, 30–41 (2000).
[CrossRef]

Other (3)

K. Murakami, T. Taguchi, and M. Yoshino, “White illumination characteristics of ZnS-based phosphor materials excited by InGaN-based ultraviolet light-emitting diode,” Proc. SPIE-Int. Soc. Opt. Eng. 4079, 112–119 (2000).

N. K. Davidenko, and K. B. Yatsimirskii, Theoretical and Experimental Chemistry (New York: Springer), p505 (1973).

K. H. Bulter, Fluorescent Lamp Phosphors, The Pennsylvania State University Press, University Park, PA (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

XRD patterns of (Ba1-x-ySryEux)3BP3O12 with (a) x = 0, y = 0; (b) x = 0.08, y = 0; (c) x = 0.08, y = 0.46; (d) x = 0.08, y = 0.92 and Ba3BP3O12 (JCPDS file no. 085–0258).

Fig. 2
Fig. 2

Schematic representation for coordination of two different Ba2+ sites in Ba3BP3O12 (Ba atoms, black spheres; O atoms, grey spheres).

Fig. 3
Fig. 3

PLE and PL spectra of (Ba0.92Eu0.08)3BP3O12 phosphor. (λex. = 355 nm, λem. = 505 nm). The dotted lines are Gaussian decomposition curves

Fig. 4
Fig. 4

PLE and PL spectra of (Sr0.92Eu0.08)3BP3O12 phosphor. (λex. = 355 nm, λem. = 420 nm). The dotted lines are Gaussian decomposition curves.

Fig. 5
Fig. 5

Comparison of PL spectra for (Ba1-xEux)3BP3O12 phosphors.

Fig. 6
Fig. 6

The log(I/xEu2+) dependence of log(xEu2+) on a logarithmic scale.

Fig. 7
Fig. 7

Comparison of PL spectra of (Ba0.92-ySryEu0.08)3BP3O12 phosphors.

Fig. 8
Fig. 8

CIE chromaticity diagram for (a) (Ba0.92Eu0.08)3BP3O12 and (b) (Ba0.46Sr0.46Eu0.08)3BP3O12 excited at 355 nm. The inset shows the (a) (Ba0.92Eu0.08)3BP3O12 and (b) (Ba0.46Sr0.46Eu0.08)3BP3O12 photos taken under 365 nm excitation in a UV box.

Fig. 9
Fig. 9

EL spectra of (a) green LED fabricated with (Ba0.92Eu0.08)3BP3O12 and (b) bluish-white LED fabricated with (Ba0.46Sr0.46Eu0.08)3BP3O12. The inset shows the green LED and bluish-white LED, both driven by a 350 mA current.

Fig. 10
Fig. 10

Temperature dependent PL spectra for (Ba0.92Eu0.08)3BP3O12 excited at 355 nm. The inset shows the relationship PL intensity and temperature for (Ba0.92Eu0.08)3BP3O12. For comparison, commercial YAG:Ce3+ and Ba2SiO4:Eu2+ are also tested under their optimal excitation.

Fig. 11
Fig. 11

The decay curves of as-synthesized phosphors excited at 355 nm and (a) monitored at 505 nm: (Ba1-xEux)3BP3O12 and (b) monitored at 420 nm: (Sr0.92Eu0.08)3BP3O12.

Tables (2)

Tables Icon

Table 1 The comparison of commercial pc-LED and those were prepared by combining (Ba0.92Eu0.08)3BP3O12 and (Ba0.46Sr0.46Eu0.08)3BP3O12 with NUV LED.

Tables Icon

Table 2 Comparison of decay times for (Ba1-xEux)3BP3O12 and (Sr0.92Eu0.08)3BP3O12.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R c 2 ( 3 V 4 π x c N ) 1 / 3
I x = k 1 + β ( x ) θ / 3
D q =3Ze 2 r 4 /5R 5
I = A 1 exp ( t τ 1 ) + A 2 exp ( t τ 2 )

Metrics