Abstract

In this study we report for the first time a method for direct patterning of silicon oxide on a silicon substrate by irradiation with a femtosecond laser of Mega Hertz pulse frequency under ambient condition. Embossed lines of silicon oxide with around 3~4 μm width and less than 100 nm height were formed by controlling the parameters such as laser pulse power and frequency rate. A Scanning Electron Microscope (SEM), an optical microscopy and a Micro-Raman and Energy Dispersive X-ray (EDX) spectroscopy were used to analyze the silicon oxide layer.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology (Englewood Cliffs, NJ: Printice-Hall, 2000).
  2. Y. J. Chabal, Fundamental Aspects of Silicon Oxidation, (Springer Ser. Mater. Sci. 46, Berlin, 2001)
  3. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
    [CrossRef]
  4. G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
    [CrossRef]
  5. A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
    [CrossRef]
  6. G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
    [CrossRef] [PubMed]
  7. D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
    [CrossRef] [PubMed]
  8. D. Bauerle, Laser processing and chemistry (Springer, New York, 3rd ed., 2000).
  9. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
    [CrossRef]
  10. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009).
    [CrossRef]
  11. P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003).
    [CrossRef]
  12. K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
    [CrossRef]
  13. Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
    [CrossRef]
  14. K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
    [CrossRef]
  15. F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
    [CrossRef]
  16. D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
    [CrossRef]
  17. J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
    [CrossRef]
  18. J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
    [CrossRef]
  19. N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
    [CrossRef]
  20. B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770 (1965).
    [CrossRef]
  21. J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
    [CrossRef]
  22. V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
    [CrossRef]
  23. A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
    [CrossRef]
  24. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
    [CrossRef]
  25. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [CrossRef] [PubMed]
  26. S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
    [CrossRef]
  27. J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
    [CrossRef]
  28. A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
    [CrossRef]
  29. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
    [CrossRef]
  30. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]

2009 (3)

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009).
[CrossRef]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

2008 (1)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

2007 (1)

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

2005 (3)

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

2004 (6)

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
[CrossRef]

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
[CrossRef]

2003 (2)

P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003).
[CrossRef]

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

2002 (2)

K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

2001 (1)

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

2000 (2)

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

1985 (2)

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
[CrossRef]

1984 (1)

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

1978 (1)

J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
[CrossRef]

1965 (1)

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770 (1965).
[CrossRef]

1963 (1)

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Alacakir, A.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

Ancona, A.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Arai, A. Y.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Asplund, M. C.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Atanassova, E.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

Attavar, S.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Aygun, G.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

Blair, S.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Blanc, J.

J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
[CrossRef]

Bonse, J.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Bovatsek, J.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Brezinka, K. W.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Chang, J.-W.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Chao, T.-S.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Chen, T. T.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Chien, F. S.-S.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Cho, B.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

Chou, Y.-C.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Chung, K. H.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Dalili, A.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009).
[CrossRef]

Danielson, G. C.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Deal, B. E.

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770 (1965).
[CrossRef]

Degraeve, R.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Eaton, S. M.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Esfandyarpour, B.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Fargeix, A.

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

Flynn, N. T.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Garfunkel, E. L.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Gates, R.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Ghibaudo, G.

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

Grayson, A. C. R.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Green, M. L.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Grove, A. S.

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770 (1965).
[CrossRef]

Guo, C. L.

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

Gusev, E. P.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Gwo, S.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Hashemi, P.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Hekmat-Shoar, B.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Herman, P. R.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Higgins, T. B.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Hong, S.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Hsieh, W.-F.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Irene, E. A.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Johnson, A. M.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Kamotani, Y.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

Kawasegi, N.

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
[CrossRef]

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
[CrossRef]

Kim, K.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Kim, S. J.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Kim, Y. T.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Koma, A.

K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
[CrossRef]

Lee, D. S.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Lee, D. W.

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
[CrossRef]

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
[CrossRef]

Lim, D.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

Lim, L. E. N.

P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Limpert, J.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Lin, S.-W.

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

Linford, M. R.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Liu, Z. F.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Luo, G.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Massoud, H. Z.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Maycock, P. D.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Mazumder, J.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

Meixner, A. J.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

Mirkin, C. A.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Mohajerzadeh, S.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Morita, N.

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
[CrossRef]

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
[CrossRef]

Ngoi, B. K. A.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Nolte, S.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Okada, R.

K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
[CrossRef]

Ozyuzer, L.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

Panchatsharam, S.

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

Park, J. W.

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
[CrossRef]

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
[CrossRef]

Park, S. H.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Plummer, J. D.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Rademaker, K.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Robertson, M. D.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Röser, F.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Rouhi, N.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Saiki, K.

K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
[CrossRef]

Saini, G.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Samalam, V. K.

V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
[CrossRef]

Shah, L.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Shanks, H. R.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Shawgo, R. S.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Sidles, P. H.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Sivakumar, N. R.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Stanley, P.

P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Takayama, S.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

Tan, B.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009).
[CrossRef]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Tünnermann, A.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

Turan, R.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

Ueno, K.

K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
[CrossRef]

Venkatakrishnan, K.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009).
[CrossRef]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

Weinberger, D. A.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Wessels, B. W.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Xie, G. Y.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Yang, H. S.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Yawen, L. R.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Yoon, T. H.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Yoshino, F.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Zhang, H.

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Zhang, J.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Zhang, Y. Y.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Zhou, X.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Zhu, T.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Adv. Mater. (1)

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004).
[CrossRef]

J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
[CrossRef]

V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
[CrossRef]

F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000).
[CrossRef]

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[CrossRef]

ASME. J. Manuf. Sci. Eng. (1)

J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004).
[CrossRef]

J. Appl. Phys. (4)

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770 (1965).
[CrossRef]

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

J. Appl. Phys. A (1)

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009).
[CrossRef]

J. Electrochem. Soc. (1)

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

J. Phys. D (1)

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004).
[CrossRef]

J. Surf. Sci. (1)

K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002).
[CrossRef]

Lab Chip (3)

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003).
[CrossRef]

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Mater. Res. Soc. Symp. Proc. (1)

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Nanotechnology (1)

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Opt. Express (2)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Phys. Rev. (1)

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Proc. IEEE (1)

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Vac. Sci. Technol. B (1)

P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003).
[CrossRef]

Other (3)

D. Bauerle, Laser processing and chemistry (Springer, New York, 3rd ed., 2000).

D. J. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology (Englewood Cliffs, NJ: Printice-Hall, 2000).

Y. J. Chabal, Fundamental Aspects of Silicon Oxidation, (Springer Ser. Mater. Sci. 46, Berlin, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of Silicon surface after irradiation with Femtosecond Laser pulses at 1 W at the various pulse frequency (left to right: 8, 13 and 26 MHz)

Fig. 2
Fig. 2

SEM image of silicon surface after irradiation with Femtosecond Laser pulses at 0.35 W at the pulse frequency of 26 MHz.

Fig. 3
Fig. 3

(a) Optical microscope topography and cross sectional image (26 MHz, 0.35 W), (b) optical microscope topography and cross sectional image (13 MHz, 1 W).

Fig. 4
Fig. 4

(a) Graph of EDX spectroscopy analysis (b) Graph of Micro-Raman spectroscopy analysis.

Fig. 5
Fig. 5

(a) theoretical results based on Eq. (4) (Relation between T and frequency at various powers) and (b)Experimental results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ T = I a τ l r 2 4 k t π D t
T = N × Δ T = N × I a τ l r 2 4 k t π D t
I a = K × ( 1 R ) × I i
I i = 4 P π τ l d 2 f
T = N K ( 1 R ) P 4 k π 3 D t

Metrics