Abstract

In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. O'Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems [Invited],” J. Opt. Netw. 4(6), 312–322 (2005).
    [CrossRef]
  2. V. W. S. Chan, “Free-Space Optical Communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
    [CrossRef]
  3. J. A. Louthain and J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
    [CrossRef] [PubMed]
  4. T. C. Tozer and D. Grace, “High-altitude platforms for wireless communications,” IEE Electron. Commun. Eng. J. 13(3), 127–137 (2001).
    [CrossRef]
  5. B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 45(10), 62–69 (2007).
    [CrossRef]
  6. J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
    [CrossRef]
  7. B. Epple, “Development and Implementation of a Pointing, Acquisition and Tracking System for Optical Free-Space Communication Systems on High Altitude Platforms,” Degree Thesis (Ludwig Maximilians Universität, 2005).
  8. T. H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
    [CrossRef]
  9. V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
    [CrossRef]
  10. G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
    [CrossRef]
  11. C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
    [CrossRef]
  12. G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
    [CrossRef] [PubMed]
  13. X. G. Xia, C. Boncelet, and G. Arce, “Wavelet transform based watermark for digital images,” Opt. Express 3(12), 497–511 (1998).
    [CrossRef] [PubMed]
  14. S. W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar, (Cambridge University Press, Cambridge, 2005).
  15. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, Second edition, (SPIE Optical Engineering Press, Bellingham, 2005), Chap.6.
  16. J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
    [CrossRef]
  17. H. Faraji and W. J. MacLean, “CCD noise removal in digital images,” IEEE Trans. Image Process. 15(9), 2676–2685 (2006).
    [CrossRef] [PubMed]
  18. Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
    [CrossRef]
  19. Z. Zhimin, B. Pain, and E. R. Fossum, “Frame-transfer CMOS active pixel sensor with pixel binning,” IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997).
    [CrossRef]
  20. E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
    [CrossRef]
  21. S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
    [CrossRef]

2008 (2)

J. A. Louthain and J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
[CrossRef] [PubMed]

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
[CrossRef]

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 45(10), 62–69 (2007).
[CrossRef]

2006 (3)

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

V. W. S. Chan, “Free-Space Optical Communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
[CrossRef]

H. Faraji and W. J. MacLean, “CCD noise removal in digital images,” IEEE Trans. Image Process. 15(9), 2676–2685 (2006).
[CrossRef] [PubMed]

2005 (2)

D. O'Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems [Invited],” J. Opt. Netw. 4(6), 312–322 (2005).
[CrossRef]

T. H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[CrossRef]

2003 (1)

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

2001 (2)

C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
[CrossRef]

T. C. Tozer and D. Grace, “High-altitude platforms for wireless communications,” IEE Electron. Commun. Eng. J. 13(3), 127–137 (2001).
[CrossRef]

2000 (3)

V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
[CrossRef]

Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
[CrossRef]

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

1998 (1)

X. G. Xia, C. Boncelet, and G. Arce, “Wavelet transform based watermark for digital images,” Opt. Express 3(12), 497–511 (1998).
[CrossRef] [PubMed]

1997 (1)

Z. Zhimin, B. Pain, and E. R. Fossum, “Frame-transfer CMOS active pixel sensor with pixel binning,” IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997).
[CrossRef]

1993 (1)

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Alexander, J. W.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Arce, G.

X. G. Xia, C. Boncelet, and G. Arce, “Wavelet transform based watermark for digital images,” Opt. Express 3(12), 497–511 (1998).
[CrossRef] [PubMed]

Biswas, A.

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

Bloom, S. H.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Boncelet, C.

X. G. Xia, C. Boncelet, and G. Arce, “Wavelet transform based watermark for digital images,” Opt. Express 3(12), 497–511 (1998).
[CrossRef] [PubMed]

Borel, C. C.

C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
[CrossRef]

Chan, V. J.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Chan, V. W. S.

V. W. S. Chan, “Free-Space Optical Communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
[CrossRef]

V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
[CrossRef]

Chen, I. H.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Choi, K.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Daneshpanah, M.

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

Davis, C. C.

T. H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[CrossRef]

Degerli, Y.

Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
[CrossRef]

Dwivedi, A.

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

Epple, B.

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 45(10), 62–69 (2007).
[CrossRef]

Faraji, H.

H. Faraji and W. J. MacLean, “CCD noise removal in digital images,” IEEE Trans. Image Process. 15(9), 2676–2685 (2006).
[CrossRef] [PubMed]

Farre, J. A.

Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
[CrossRef]

Fossum, E. R.

Z. Zhimin, B. Pain, and E. R. Fossum, “Frame-transfer CMOS active pixel sensor with pixel binning,” IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997).
[CrossRef]

Foster, C.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Funk, C. C.

C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
[CrossRef]

Grace, D.

T. C. Tozer and D. Grace, “High-altitude platforms for wireless communications,” IEE Electron. Commun. Eng. J. 13(3), 127–137 (2001).
[CrossRef]

Hammons, A.

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

Henniger, H.

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 45(10), 62–69 (2007).
[CrossRef]

Ho, T. H.

T. H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[CrossRef]

Horwath, J.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
[CrossRef]

Javidi, B.

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

Jeganathan, M.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Jones, S.

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

Juarez, J.

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

Katz, M.

D. O'Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems [Invited],” J. Opt. Netw. 4(6), 312–322 (2005).
[CrossRef]

Knapek, M.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
[CrossRef]

Korevaar, E. J.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Lavernhe, F.

Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
[CrossRef]

Lee, S.

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Liu, C. S.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Louthain, J. A.

J. A. Louthain and J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
[CrossRef] [PubMed]

MacLean, W. J.

H. Faraji and W. J. MacLean, “CCD noise removal in digital images,” IEEE Trans. Image Process. 15(9), 2676–2685 (2006).
[CrossRef] [PubMed]

Magnan, P.

Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
[CrossRef]

Martínez-Corral, M.

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

Martínez-Cuenca, R.

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

Milner, S. D.

T. H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[CrossRef]

Moll, F.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
[CrossRef]

Monacos, S.

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

Navarro, H.

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

Nichols, R.

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

O'Brien, D.

D. O'Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems [Invited],” J. Opt. Netw. 4(6), 312–322 (2005).
[CrossRef]

Ortiz, G. G.

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

Pain, B.

Z. Zhimin, B. Pain, and E. R. Fossum, “Frame-transfer CMOS active pixel sensor with pixel binning,” IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997).
[CrossRef]

Perlot, N.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
[CrossRef]

Rivers, M. D.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Roberts, D. A.

C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
[CrossRef]

Saavedra, G.

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

Schmidt, J. D.

J. A. Louthain and J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
[CrossRef] [PubMed]

Slatnick, K. D.

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

Theiler, J.

C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
[CrossRef]

Tozer, T. C.

T. C. Tozer and D. Grace, “High-altitude platforms for wireless communications,” IEE Electron. Commun. Eng. J. 13(3), 127–137 (2001).
[CrossRef]

Weerackody, V.

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

Wright, M.

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

Xia, X. G.

X. G. Xia, C. Boncelet, and G. Arce, “Wavelet transform based watermark for digital images,” Opt. Express 3(12), 497–511 (1998).
[CrossRef] [PubMed]

Zhimin, Z.

Z. Zhimin, B. Pain, and E. R. Fossum, “Frame-transfer CMOS active pixel sensor with pixel binning,” IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997).
[CrossRef]

IEE Electron. Commun. Eng. J. (1)

T. C. Tozer and D. Grace, “High-altitude platforms for wireless communications,” IEE Electron. Commun. Eng. J. 13(3), 127–137 (2001).
[CrossRef]

IEEE Commun. Mag. (2)

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 45(10), 62–69 (2007).
[CrossRef]

J. Juarez, A. Dwivedi, A. Hammons, S. Jones, V. Weerackody, and R. Nichols, “Free-Space Optical Communications for Next-generation Military Networks,” IEEE Commun. Mag. 44(11), 46–51 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. W. S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

Y. Degerli, F. Lavernhe, P. Magnan, and J. A. Farre, “Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels,” IEEE Trans. Electron. Dev. 47(5), 949–962 (2000).
[CrossRef]

Z. Zhimin, B. Pain, and E. R. Fossum, “Frame-transfer CMOS active pixel sensor with pixel binning,” IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Trans. Geosci. Rem. Sens. 39(7), 1410–1420 (2001).
[CrossRef]

IEEE Trans. Image Process. (1)

H. Faraji and W. J. MacLean, “CCD noise removal in digital images,” IEEE Trans. Image Process. 15(9), 2676–2685 (2006).
[CrossRef] [PubMed]

Int. J. Satell. Commun. Network. (1)

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high-altitude platform networks: Atmospheric turbulence and downlink availability,” Int. J. Satell. Commun. Network. 25(5), 501–528 (2007).
[CrossRef]

J. Lightwave Technol. (1)

V. W. S. Chan, “Free-Space Optical Communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
[CrossRef]

J. Opt. Netw. (1)

D. O'Brien and M. Katz, “Optical wireless communications within fourth-generation wireless systems [Invited],” J. Opt. Netw. 4(6), 312–322 (2005).
[CrossRef]

Opt. Express (3)

J. A. Louthain and J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008).
[CrossRef] [PubMed]

G. Saavedra, R. Martínez-Cuenca, M. Martínez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16(22), 17154–17160 (2008).
[CrossRef] [PubMed]

X. G. Xia, C. Boncelet, and G. Arce, “Wavelet transform based watermark for digital images,” Opt. Express 3(12), 497–511 (1998).
[CrossRef] [PubMed]

Proc. SPIE (4)

G. G. Ortiz, S. Lee, S. Monacos, M. Wright, and A. Biswas, “Design and development of a robust atp subsystem for the altair uav-to-ground lasercomm 2.5 gbps demonstration,” Proc. SPIE 4975, 103–114 (2003).
[CrossRef]

T. H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[CrossRef]

E. J. Korevaar, S. H. Bloom, K. D. Slatnick, V. J. Chan, I. H. Chen, M. D. Rivers, C. Foster, K. Choi, and C. S. Liu, “Status of SDIO/IS&T lasercom testbed program,” Proc. SPIE 1866, 116–127 (1993).
[CrossRef]

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[CrossRef]

Other (3)

B. Epple, “Development and Implementation of a Pointing, Acquisition and Tracking System for Optical Free-Space Communication Systems on High Altitude Platforms,” Degree Thesis (Ludwig Maximilians Universität, 2005).

S. W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar, (Cambridge University Press, Cambridge, 2005).

L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, Second edition, (SPIE Optical Engineering Press, Bellingham, 2005), Chap.6.

Supplementary Material (4)

» Media 1: MOV (2157 KB)     
» Media 2: MOV (1524 KB)     
» Media 3: MOV (1665 KB)     
» Media 4: MOV (969 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

PAT process of the air-to-ground optical wireless link.

Fig. 2
Fig. 2

The PDF of the normalized laser beam irradiance.

Fig. 3
Fig. 3

The structure of DDMF.

Fig. 4
Fig. 4

DP versus TNR and ISNR with different N. (a) N takes 7, (b) N takes 15, (c) N takes 31, (d) N takes 63.

Fig. 5
Fig. 5

(a) FAP versus TNR, (b) ISNR versus TNR when DP equals to 0.99.

Fig. 6
Fig. 6

Outdoor experiment setup.

Fig. 7
Fig. 7

Outdoor experiment results.(a) original image captured by camera,(b) original gray scale map of the image,(c) processed image (N = 7, ISNR = 4).

Fig. 8
Fig. 8

Single-frame excerpts from animations of the peak filter output changes with the growth of ISNR. (a) N takes 7 (Media 1). (b) N takes 15 (Media 2). (c) N takes 31 (Media 3). (d) N takes 63 (Media 4).

Tables (2)

Tables Icon

Table 1 The requirements for ISNR and TNR with different N (FAP<0.01, DP>0.99)

Tables Icon

Table 2 Comparison of the traditional detection scheme and the proposed scheme (FAP<0.01, DP>0.99)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

σ I 2 = < I 2 > < I > 2 1 ,
p ( I n ) = 1 I n 2 π σ I 2 exp { [ ln ( I n ) + 1 2 σ I 2 ] 2 2 σ I 2 } ,
σ n ( i ) = σ e l e 2 + σ s h o t 2 ( i ) .
I S I R = P b P intmax ,
I S N R = P b e f σ nmax ,
a ( n ) = S ( n ) ,   b ( n ) = S ( n + q ) ,     n ( 0 , 1 , N 1 ) ,
I ( m , i ) = { I b a c k ( m , i )    only background I b e a c o n ( m , i ) + I b a c k ( m , i )    background with b e a c o n ,
U o ( m , i ) = a ( n ) I ( m , i ) b ( n ) I ( m , i ) = k = 0 N 1 a ( k ) I ( m + k , i ) k = 0 N 1 b ( k ) I ( m + k , i ) ,
E ( U 0 ( m , i ) ) | H 0 = E [ k = 0 N 1 a ( k ) I ( m + k , i ) k = 0 N 1 b ( k ) I ( m + k , i ) ] = ( k = 0 N 1 a ( k ) k = 0 N 1 b ( k ) ) E ( I b a c k ( m , i ) ) = 0.
E ( U 0 ( m , i ) ) | H 1 = E [ k = 0 N 1 a ( k ) I ( m + k , i ) k = 0 N 1 b ( k ) I ( m + k , i ) ] = E [ k = 0 N 1 a ( k ) ( I b e a c o n ( m + k ) + I b a c k ( m + k ) ) k = 0 N 1 b ( k ) ( I b e a c o n ( m + k ) + I b a c k ( m + k ) ) ] = { N + 1 4 P b p ,      when the image sequence matches the above part of DDMF; 0 when the image sequence does not match the DDMF; N + 1 4 P b p ,    when the  image sequence matches the below part of DDMF;
D ( U 0 ( m , i ) ) = D [ k = 0 N 1 a ( k ) I ( m + k , i ) k = 0 N 1 b ( k ) I ( m + k , i ) ] = k = 0 N 1 ( a ( k ) b ( k ) ) 2 D ( I ( m + k , i ) ) = N + 1 2 σ n 2 ( i ) .
p ( U o ( i ) ) | H 0 = 1 ( N + 1 ) π σ n ( i ) exp ( U o 2 ( N + 1 ) σ n 2 ( i ) ) ,
p ( U o ( i ) ) | H 1 = 1 ( N + 1 ) π σ n ( i ) exp ( ( U o P ) 2 ( N + 1 ) σ n 2 ( i ) ) ,
P f a _ i m a g e = 1 i = 1 M ( 1 P f a _ p i x e l i ) = 1 ( 1 β 1 ( N + 1 ) π σ n max exp ( U o 2 ( N + 1 ) σ n max 2 ) d U o ) M = 1 ( 1 2 + 1 2 e r f ( β N + 1 σ n max ) ) M ,
P f a _ i m a g e = 1 ( 1 2 + 1 2 e r f ( T N R N + 1 ) ) M .
P dt_image = P { U o ( m , i ) β , U o ( m , i ) > U o ( m , k ) , 1 k M , k i } = β k = 1 , k i M p { U o ( m , k ) < U o ( m , i ) | U o ( m , i ) } p ( U o ( m , i ) ) d U o ( m , i ) = 1 π T N R N + 1 [ 1 2 + 1 2 e r f ( z ) ] M 1 exp [ ( z P N + 1 σ n max ) 2 ] d z .
P b _ a v e = P b p ( N + 1 ) 2 N .
I S N R = P b _ a v e σ n max .
P dt_image = 1 π T N R N + 1 σ n [ 1 2 + 1 2 e r f ( z ) ] M 1 exp [ ( z I S N R N 2 N + 1 ) 2 ] d z .

Metrics