Abstract

We extend the previous theoretical study on the effect of outer silica cladding to the analysis on real field profiles in a practical PCF. Clear field profiles for the first higher-order cladding modes are presented and discussed. The observed mode fields are reproduced by numerical calculations, and it turns out that they correspond to LP16 mode groups. Optical properties of the observed modes such as lobe direction and polarization are also investigated. The results of this study will be useful in the design of the PCF-based optical devices utilizing cladding mode coupling.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  2. N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
    [Crossref]
  3. M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
    [Crossref]
  4. S. H. Lee, K. Y. Song, and B. Y. Kim, “Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling,” IEEE Photon. Technol. Lett. 17(12), 2631–2633 (2005).
    [Crossref]
  5. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999).
    [Crossref]
  6. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-Mode-Resonances in Air–Silica Microstructure Optical Fibers,” J. Lightwave Technol. 18(8), 1084–1100 (2000).
    [Crossref]
  7. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
    [Crossref] [PubMed]
  8. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
    [Crossref]
  9. G. Kakarantzas, T. A. Birks, and P. S. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett. 27(12), 1013–1015 (2002).
    [Crossref]
  10. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
    [Crossref]
  11. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
    [Crossref] [PubMed]
  12. K. N. Park, T. Erdogan, and K. S. Lee, “Cladding mode coupling in long-period gratings formed in photonic crystal fibers,” Opt. Commun. 266(2), 541–545 (2006).
    [Crossref]
  13. H. C. Park, I.-K. Hwang, D. I. Yeom, and B. Y. Kim, “Analyses of cladding modes in photonic crystal fiber,” Opt. Express 15(23), 15154–15160 (2007).
    [Crossref] [PubMed]
  14. S. D. Lim, H. C. Park, I.-K. Hwang, S. B. Lee, and B. Y. Kim, “Observation and analysis of cladding modes in photonic crystal fiber,” in Proc. 35th European Conf. on Opt. Commun. (ECOC 2009), 2.1.2, 2009
  15. M. W. Haakestad and H. E. Engan, “Acoustooptic Properties of a Weakly Multimode Solid Core Photonic Crystal Fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
    [Crossref]
  16. S. D. Lim, H. C. Park, I. K. Hwang, and B. Y. Kim, “Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber,” Opt. Express 16(9), 6125–6133 (2008).
    [Crossref] [PubMed]
  17. S. D. Lim, H. C. Park, and B. Y. Kim, “Twist effect on spectral properties of two-mode fiber acousto-optic filters,” Opt. Express 16(17), 13042–13051 (2008).
    [Crossref] [PubMed]
  18. P. F. Mclsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microw. Theory Tech. MTT-23(5), 421–429 (1975).
    [Crossref]

2008 (3)

2007 (1)

2006 (2)

M. W. Haakestad and H. E. Engan, “Acoustooptic Properties of a Weakly Multimode Solid Core Photonic Crystal Fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
[Crossref]

K. N. Park, T. Erdogan, and K. S. Lee, “Cladding mode coupling in long-period gratings formed in photonic crystal fibers,” Opt. Commun. 266(2), 541–545 (2006).
[Crossref]

2005 (1)

S. H. Lee, K. Y. Song, and B. Y. Kim, “Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling,” IEEE Photon. Technol. Lett. 17(12), 2631–2633 (2005).
[Crossref]

2004 (1)

2003 (1)

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (2)

1999 (1)

1998 (1)

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

1996 (1)

1975 (1)

P. F. Mclsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microw. Theory Tech. MTT-23(5), 421–429 (1975).
[Crossref]

Atkin, D. M.

Birks, T. A.

Burdge, G. L.

Diez, A.

Eggleton, B. J.

Engan, H. E.

Erdogan, T.

K. N. Park, T. Erdogan, and K. S. Lee, “Cladding mode coupling in long-period gratings formed in photonic crystal fibers,” Opt. Commun. 266(2), 541–545 (2006).
[Crossref]

Février, S.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

Haakestad, M. W.

Hale, A.

Humbert, G.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

Hwang, I. K.

Hwang, I.-K.

Kakarantzas, G.

Kerbage, C.

Kim, B. Y.

S. D. Lim, H. C. Park, I. K. Hwang, and B. Y. Kim, “Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber,” Opt. Express 16(9), 6125–6133 (2008).
[Crossref] [PubMed]

S. D. Lim, H. C. Park, and B. Y. Kim, “Twist effect on spectral properties of two-mode fiber acousto-optic filters,” Opt. Express 16(17), 13042–13051 (2008).
[Crossref] [PubMed]

H. C. Park, I.-K. Hwang, D. I. Yeom, and B. Y. Kim, “Analyses of cladding modes in photonic crystal fiber,” Opt. Express 15(23), 15154–15160 (2007).
[Crossref] [PubMed]

S. H. Lee, K. Y. Song, and B. Y. Kim, “Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling,” IEEE Photon. Technol. Lett. 17(12), 2631–2633 (2005).
[Crossref]

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Kim, H. K.

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Kim, H. S.

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Kim, J. C.

Kim, M. J.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[Crossref]

Kim, Y. H.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[Crossref]

Knight, J. C.

Lee, B. H.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[Crossref]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
[Crossref] [PubMed]

Lee, K. S.

K. N. Park, T. Erdogan, and K. S. Lee, “Cladding mode coupling in long-period gratings formed in photonic crystal fibers,” Opt. Commun. 266(2), 541–545 (2006).
[Crossref]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, K. Y. Song, and B. Y. Kim, “Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling,” IEEE Photon. Technol. Lett. 17(12), 2631–2633 (2005).
[Crossref]

Lim, J. H.

Lim, S. D.

Malki, A.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

Mangan, B. J.

Mclsaac, P. F.

P. F. Mclsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microw. Theory Tech. MTT-23(5), 421–429 (1975).
[Crossref]

Mudhana, G.

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[Crossref]

Pagnoux, D.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

Park, H. C.

Park, K. N.

K. N. Park, T. Erdogan, and K. S. Lee, “Cladding mode coupling in long-period gratings formed in photonic crystal fibers,” Opt. Commun. 266(2), 541–545 (2006).
[Crossref]

Park, N.

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Reeves, W. H.

Roy, P.

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

Russell, P. S.

Russell, P. St. J.

Song, K. Y.

S. H. Lee, K. Y. Song, and B. Y. Kim, “Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling,” IEEE Photon. Technol. Lett. 17(12), 2631–2633 (2005).
[Crossref]

Spälter, S.

Strasser, T. A.

Westbrook, P. S.

White, C. A.

Windeler, R. S.

Yeom, D. I.

Yun, S. H.

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Electron. Lett. (1)

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39(4), 349–350 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (3)

N. Park, H. S. Kim, S. H. Yun, H. K. Kim, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous Measurement of Temperature and Strain Based on Double Cladding Fiber Interferometer Assisted by Fiber Grating Pair,” IEEE Photon. Technol. Lett. 20(15), 1290–1292 (2008).
[Crossref]

S. H. Lee, K. Y. Song, and B. Y. Kim, “Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling,” IEEE Photon. Technol. Lett. 17(12), 2631–2633 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. F. Mclsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microw. Theory Tech. MTT-23(5), 421–429 (1975).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

K. N. Park, T. Erdogan, and K. S. Lee, “Cladding mode coupling in long-period gratings formed in photonic crystal fibers,” Opt. Commun. 266(2), 541–545 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Other (1)

S. D. Lim, H. C. Park, I.-K. Hwang, S. B. Lee, and B. Y. Kim, “Observation and analysis of cladding modes in photonic crystal fiber,” in Proc. 35th European Conf. on Opt. Commun. (ECOC 2009), 2.1.2, 2009

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM images of cleaved PCF end face

Fig. 2
Fig. 2

Schematic configuration of the experimental setup for the near-field observation (MS: mode stripper)

Fig. 3
Fig. 3

Transmission spectrum after the acoustic long period grating

Fig. 4
Fig. 4

Observed mode field images at (A) 1541.1, (B) 1564.3, (C) 1572.1, and (D) 1581.6 nm. The images were taken by an IR CCD camera with an objective lens of 25 magnifications

Fig. 5
Fig. 5

Mode field distributions (E), (F), (G), and (H) are the calculation results that correspond to the experimental observations (A), (B), (C), and (D) in Fig. 4, respectively

Fig. 6
Fig. 6

Ex-field distributions for spatially anti-symmetric modes in the PCF (a) LP11 mode ~(e) LP18 mode @ λ = 1.6 µm.

Fig. 7
Fig. 7

(a) Plot of the effective refractive indices for the LP1n modes and (b) comparison of the indices of the LP16 mode groups in real structure to those of LP16 and LP17 modes in ideal structure

Fig. 8
Fig. 8

Plot of the effective refractive indices for the LP1n modes in the PCF with different number of air-hole layers

Fig. 9
Fig. 9

Four constituent modes of the LP11 ring modes, Electric field vectors (a), (b), (c), and (d) correspond to the HE21 × 2, TM01 and TE01, respectively.

Fig. 10
Fig. 10

Measured transmission spectra at the different acoustic vibration angles α. α is the angle between major axis of the cladding ellipse and the acoustic vibration direction.

Metrics